[1] R S Lan, L Sun, Z B Liu et al. MADNet: a fast and lightweight network for single-image super resolution. IEEE Trans Cybern, 51, 1443-1453(2021).
[2] J P Lin, L Z Liao, S L Lin et al. Deep and adaptive feature extraction attention network for single image super-resolution. J Soc Inf Disp, 32, 23-33(2024).
[3] S J Xu, H Yang, M H Li et al. Low-light image enhancement based on dual-frequency domain feature aggregation. Opto-Electron Eng, 50, 230225(2023).
[4] G H Liu, Q Yang, Y B Meng et al. A progressive fusion image enhancement method with parallel hybrid attention. Opto-Electron Eng, 50, 220231(2023).
[6] K G Lore, A Akintayo, S Sarkar. LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recognit, 61, 650-662(2017).
[7] C Wei, W J Wang, W H Yang et al. Deep retinex decomposition for low-light enhancement, 155(2018).
[8] X J Guo, Y Li, H B Ling. LIME: low-light image enhancement via illumination map estimation. IEEE Trans Image Process, 26, 982-993(2017).
[9] Y F Gong, P Y Liao, X D Zhang et al. Enlighten-GAN for super resolution reconstruction in mid-resolution remote sensing images. Remote Sens, 13, 1104(2021).
[13] J P Lin, D Wang, Z Y Xiao et al. Minimum spanning tree segmentation and extract with image edge weight optimization. J Electron Inf Technol, 45, 1494-1504(2023).
[14] D Q Cheng, Y Y You, Q Q Kou et al. A generative adversarial network incorporating dark channel prior loss used for single image defogging. Opto-Electron Eng, 49, 210448(2022).
[15] H X Liu, S L Lin, Z X Lin et al. Lightweight underwater image enhancement network based on GAN. Chin J Liq Cryst Disp, 38, 378-386(2023).
[18] A A Joshy, R Rajan. Dysarthria severity assessment using squeeze-and-excitation networks. Biomed Signal Process Control, 82, 104606(2023).
[19] S Zhang, Z W Liu, Y P Chen et al. Selective kernel convolution deep residual network based on channel-spatial attention mechanism and feature fusion for mechanical fault diagnosis. ISA Transactions, 133, 369-383(2023).
[20] N Ponomarenko, F Silvestri, K Egiazarian et al. On between-coefficient contrast masking of DCT basis functions, 1-4(2007).
[21] Z Wang, A C Bovik, H R Sheikh et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process, 13, 600-612(2004).
[23] L Zhang, L Zhang, A C Bovik. A feature-enriched completely blind image quality evaluator. IEEE Trans Image Process, 24, 2579-2591(2015).
[24] J Hai, Z Xuan, R Yang et al. R2RNet: low-light image enhancement via real-low to real-normal network. J Vis Commun Image Represent, 90, 103712(2023).
[26] K D Ma, K Zeng, Z Wang. Perceptual quality assessment for multi-exposure image fusion. IEEE Trans Image Process, 24, 3345-3356(2015).
[27] S H Wang, J Zheng, H M Hu et al. Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans Image Process, 22, 3538-3548(2013).