• Photonics Research
  • Vol. 8, Issue 10, B15 (2020)
JungYun Han1、2, Andrey A. Sukhorukov3, and Daniel Leykam1、2、*
Author Affiliations
  • 1Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34126, South Korea
  • 2Basic Science Program, University of Science and Technology, Daejeon 34113, South Korea
  • 3ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Nonlinear Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
  • show less
    DOI: 10.1364/PRJ.399919 Cite this Article Set citation alerts
    JungYun Han, Andrey A. Sukhorukov, Daniel Leykam. Disorder-protected quantum state transmission through helical coupled-resonator waveguides[J]. Photonics Research, 2020, 8(10): B15 Copy Citation Text show less
    References

    [1] F. D. M. Haldane, S. Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 100, 013904(2008).

    [2] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821-829(2014).

    [3] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [4] Z. Wang, Y. D. Chong, J. D. Joannopoulos, M. Soljačić. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett., 100, 013905(2008).

    [5] Z. Wang, Y. Chong, J. D. Joannopoulos, M. Soljačić. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 461, 772-775(2009).

    [6] D. Smirnova, D. Leykam, Y. Chong, Y. Kivshar. Nonlinear topological photonics. Appl. Phys. Rev., 7, 021306(2020).

    [7] T. Ozawa, H. M. Price. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys., 1, 349-357(2019).

    [8] G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, M. Segev. Topological insulator laser: theory. Science, 359, eaar4003(2018).

    [9] M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, M. Khajavikhan. Topological insulator laser: experiments. Science, 359, eaar4005(2018).

    [10] Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante, M. Notomi, Y. Arakawa, S. Iwamoto. Active topological photonics. Nanophotonics, 9, 547-567(2020).

    [11] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, M. Ueda. Topological phases of non-Hermitian systems. Phys. Rev. X, 8, 031079(2018).

    [12] S. Mittal, E. A. Goldschmidt, M. Hafezi. A topological source of quantum light. Nature, 561, 502-506(2018).

    [13] J.-L. Tambasco, G. Corrielli, R. J. Chapman, A. Crespi, O. Zilberberg, R. Osellame, A. Peruzzo. Quantum interference of topological states of light. Sci. Adv., 4, eaat3187(2018).

    [14] A. Blanco-Redondo, B. Bell, D. Oren, B. J. Eggleton, M. Segev. Topological protection of biphoton states. Science, 362, 568-571(2018).

    [15] M. Wang, C. Doyle, B. Bell, M. J. Collins, E. Magi, B. J. Eggleton, M. Segev, A. Blanco-Redondo. Topologically protected entangled photonic states. Nanophotonics, 8, 1327-1335(2019).

    [16] C. Gneiting, F. Nori. Disorder-induced dephasing in backscattering-free quantum transport. Phys. Rev. Lett., 119, 176802(2017).

    [17] A. Streltsov, G. Adesso, M. B. Plenio. Colloquium: quantum coherence as a resource. Rev. Mod. Phys., 89, 041003(2017).

    [18] E. Joos, H. D. Zeh, C. Kiefer, D. J. Giulini, J. Kupsch, I.-O. Stamatescu. Decoherence and the Appearance of a Classical World in Quantum Theory(2013).

    [19] C. M. Kropf, C. Gneiting, A. Buchleitner. Effective dynamics of disordered quantum systems. Phys. Rev. X, 6, 031023(2016).

    [20] M. C. Rechtsman, Y. Lumer, Y. Plotnik, A. Perez-Leija, A. Szameit, M. Segev. Topological protection of photonic path entanglement. Optica, 3, 925-930(2016).

    [21] S. Mittal, V. V. Orre, M. Hafezi. Topologically robust transport of entangled photons in a 2D photonic system. Opt. Express, 24, 15631-15641(2016).

    [22] C. Gneiting, D. Leykam, F. Nori. Disorder-robust entanglement transport. Phys. Rev. Lett., 122, 066601(2019).

    [23] L. Yuan, Q. Lin, A. Zhang, M. Xiao, X. Chen, S. Fan. Photonic gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions. Phys. Rev. Lett., 122, 083903(2019).

    [24] M. Hafezi, E. A. Demler, M. D. Lukin, J. M. Taylor. Robust optical delay lines with topological protection. Nat. Phys., 7, 907-912(2011).

    [25] M. Hafezi, S. Mittal, J. Fan, A. Migdall, J. M. Taylor. Imaging topological edge states in silicon photonics. Nat. Photonics, 7, 1001-1005(2013).

    [26] S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, M. Hafezi. Topologically robust transport of photons in a synthetic gauge field. Phys. Rev. Lett., 113, 087403(2014).

    [27] S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, M. Hafezi. Measurement of topological invariants in a 2D photonic system. Nat. Photonics, 10, 180-183(2016).

    [28] L.-H. Wu, X. Hu. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett., 114, 223901(2015).

    [29] Y. Plotnik, M. A. Bandres, S. Stützer, Y. Lumer, M. C. Rechtsman, A. Szameit, M. Segev. Analogue of Rashba pseudo-spin-orbit coupling in photonic lattices by gauge field engineering. Phys. Rev. B, 94, 020301(2016).

    [30] E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, M. Segev. Photonic topological insulator in synthetic dimensions. Nature, 567, 356-360(2019).

    [31] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, O. Zilberberg. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett., 109, 106402(2012).

    [32] C. H. L. Quay, T. L. Hughes, J. A. Sulpizio, L. N. Pfeiffer, K. W. Baldwin, K. W. West, D. Goldhaber-Gordon, R. de Picciotto. Observation of a one-dimensional spin orbit gap in a quantum wire. Nat. Phys., 6, 336-339(2010).

    [33] J. Han, C. Gneiting, D. Leykam. Helical transport in coupled resonator waveguides. Phys. Rev. B, 99, 224201(2019).

    [34] C. Hong, Z. You, L. Mandel. Nonclassical photon interference effects. Photons and Quantum Fluctuations, 5, 51(1988).

    [35] A. Yariv, Y. Xu, R. K. Lee, A. Scherer. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett., 24, 711-713(1999).

    [36] D. Leykam, S. Mittal, M. Hafezi, Y. D. Chong. Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices. Phys. Rev. Lett., 121, 023901(2018).

    [37] K. Gottfried, T.-M. Yan. Quantum Mechanics: Fundamentals(2003).

    [38] A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, A. Melloni. Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits. J. Opt., 12, 104008(2010).

    [39] C. W. Gardiner, M. J. Collett. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A, 31, 3761-3774(1985).

    [40] F. Schwabl. Advanced Quantum Mechanics(1997).

    [41] R. Loudon. The Quantum Theory of Light(2000).

    [42] A. M. Brańczyk. Hong-Ou-Mandel interference(2017).

    [43] J. G. Titchener, M. Gräfe, R. Heilmann, A. S. Solntsev, A. Szameit, A. A. Sukhorukov. Scalable on-chip quantum state tomography. npj Quantum Inf., 4, 19(2018).

    [44] M. Zych. Quantum systems under gravitational time dilation(2015).

    [45] T. Legero, T. Wilk, A. Kuhn, G. Rempe. Time-resolved two-photon quantum interference. Appl. Phys. B, 77, 797-802(2003).

    [46] X. Y. Zou, L. J. Wang, L. Mandel. Induced coherence and indistinguishability in optical interference. Phys. Rev. Lett., 67, 318-321(1991).

    [47] G. Weihs, A. Zeilinger. Photon statistics at beam-splitters: an essential tool in quantum information and teleportation. Coherence and Statistics of Photons and Atoms, 262-288(2001).

    [48] H. Lee, P. Kok, J. P. Dowling. A quantum Rosetta stone for interferometry. J. Mod. Opt., 49, 2325-2338(2002).

    [49] S. Paesani, M. Borghi, S. Signorini, A. Maïnos, L. Pavesi, A. Laing. Near-ideal spontaneous photon sources in silicon quantum photonics. Nat. Commun., 11, 2505(2020).

    [50] S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, G. J. Pryde. Unconditional violation of the shot-noise limit in photonic quantum metrology. Nat. Photonics, 11, 700-703(2017).

    [51] M. A. Nielsen, I. Chuang. Quantum Computation and Quantum Information(2002).

    [52] S. Sadana, D. Ghosh, K. Joarder, A. N. Lakshmi, B. C. Sanders, U. Sinha. Near-100% two-photon-like coincidence-visibility dip with classical light and the role of complementarity. Phys. Rev. A, 100, 013839(2019).

    [53] E. De Faria, W. De Melo. Mathematical Aspects of Quantum Field Theory, 127(2010).

    CLP Journals

    [1] Andrea Alù, Laura Pilozzi, Haitan Xu, Jingyun Fan. Topological photonics and beyond: introduction[J]. Photonics Research, 2021, 9(1): TPB1

    JungYun Han, Andrey A. Sukhorukov, Daniel Leykam. Disorder-protected quantum state transmission through helical coupled-resonator waveguides[J]. Photonics Research, 2020, 8(10): B15
    Download Citation