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We predict the preservation of temporal indistinguishability of photons propagating through helical coupled-
resonator optical waveguides (H-CROWs). H-CROWs exhibit a pseudospin-momentum locked dispersion,
which we show suppresses on-site disorder-induced backscattering and group velocity fluctuations. We simulate
numerically the propagation of two-photon wave packets, demonstrating that they exhibit almost perfect Hong–
Ou–Mandel dip visibility and then can preserve their quantum coherence even in the presence of moderate
disorder, in contrast with regular CROWs, which are highly sensitive to disorder. As indistinguishability is
the most fundamental resource of quantum information processing, H-CROWs may find applications for the
implementation of robust optical links and delay lines in the emerging quantum photonic communication
and computational platforms. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.399919

1. INTRODUCTION

Topological photonics is emerging as a way to create disorder-
immune waveguides for light using edge modes of media with
nontrivial topological properties [1–3]. Since the first proof-of-
concept experiments using gyro-magnetic microwave photonic
crystals [4,5], various approaches have emerged to demonstrate
topological transport at different length and energy scales [2,3].
Moreover, this field is developing by harmonizing with existing
subfields of photonics, i.e., exploring the role of topology in
nonlinear optical effects [6], dynamically modulated systems
[7], lasers [8–10], and other non-Hermitian systems with struc-
tured gain and loss [11].

One promising application of topological photonics is the
robust generation and transport of quantum state of light
[12–15]. It is a more challenging problem, as the preservation
of quantum properties, such as indistinguishability, depends on
the phase information, which is often not robust against dis-
order even for topological edge states [16]. Protecting indistin-
guishability has turned out to be important, as it provides a
desirable resource in quantum technologies to generate entan-
glement [17]. In optical delay lines, indistinguishability is de-
termined by the degree of temporal overlap, as depicted in
Fig. 1. An obstacle to preservation of temporal overlap through
standard delay lines is disorder, which can not only induce
backscattering and Anderson localization of propagating waves
but also destroy information related to the relative phase, which

occurs due to the dephasing of the ensemble-averaged
state [18,19].

A potential solution is to use the robustness of topological
edge states to protect quantum states of light [13,20–23].
For example, photonic quantum spin-Hall phases host bi-
directional edge states, which are protected against backscatter-
ing by time-reversal and internal (e.g., crystalline) symmetries.
Quantum spin-Hall edge states were demonstrated in 2D
silicon ring resonator arrays, where the circulation direction
within the rings plays the role of spin [24–27]. Other ap-
proaches introduce sublattices as a pseudospin degree of free-
dom emulating real spins [28,29]. The quantum spin-Hall
phase supports transport and is robust against certain types
of disorder, as backscattering requires a spin flip.

Thus far, topologically protected waveguiding has been
largely demonstrated in two or higher dimensional photonic
systems, while 1D topologically protected transport has re-
quired synthetic dimensions [30] or time modulation such as
adiabatic pumping [31]. There is another approach to achieve
disorder-resistant waveguiding in 1D without a topological
bandgap, based on directly implementing a spin-momentum
locked dispersion by breaking time-reversal symmetry, which
has been demonstrated using 1D electronic quantum wires
[32]. Recently, we proposed a model of a quasi-1D coupled-
resonator optical waveguide (CROW) exhibiting a similar
helical spin-momentum locked dispersion (H-CROW), by
combining circulation direction and sublattice spin-like degrees
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of freedom. The former effectively breaks time-reversal sym-
metry, while the coupling between different sublattices can
be tuned to create a sublattice-momentum locked dispersion
relation [33]. This results in a suppression of backscattering
and enhancement of localization length compared with the
regular CROWmodel as well as preservation of phase informa-
tion. It is noteworthy, as it provides the way to miniaturize a
disorder-resistant waveguide by inducing helical transport.

In this paper, we study the propagation of quantum states of
light through H-CROWs and demonstrate that temporal indis-
tinguishability can be robust against moderate disorder, thereby
enabling the protection of entangled states. First, in Section 2,
we compute the delay time distribution of single-photon states
propagating through disordered H-CROWs and find that, for a
given disorder strength, H-CROWs yield a narrower distribu-
tion of delays compared with regular CROWs. Thus, the tem-
poral overlap of photons travelling along different paths can be
preserved. In Section 3, we compute coincidence probability as
a witness of indistinguishability and show the Hong–Ou–
Mandel (HOM) dip [34]. We then study in Section 4 the
propagation of a path-entangled photonic state (N00N state)
and show that H-CROWs protect their entanglement. We
quantify their purity, associated with an inverse HOM dip,
and obtain larger entanglement entropy compared with regular
CROWs. We present conclusions and an outlook in Section 5.

2. MODEL OF H-CROWS WITH
DISORDER-ROBUST TRANSPORT

The helical-CROW (H-CROW) consists of two legs of reso-
nant ring cavities coupled via off-resonant link rings, as illus-
trated in Fig. 2. We assume decoupled circulation modes of
each cavity, which allows one to effectively break time-reversal
symmetry by making the link rings asymmetric. We are inter-
ested in the propagation of wave packets close to the band
center, where the tight-binding approximation is valid [24,35].

Under this approximation, each unit cell hosts two sites, with
coupling between nearest and next-nearest neighbors.

The tight-binding Hamiltonian governing time evolution of
one specific circulation direction (counterclockwise) in the ab-
sence of disorder reads [24,25,33,36]

Ĥ 0,ccw �
X
n
�Ĥ a,ccw � Ĥ b,ccw � Ĥ ab,ccw � Ĥ †

ab,ccw�,

Ĥ a,ccw � Jâ†n�−iân−1 � iân�1�,
Ĥ b,ccw � Jb̂†n�ib̂n−1 − ib̂n�1�,

Ĥ ab,ccw � 2Jâ†n
h
b̂n �

1

2
�b̂n−1 � b̂n�1�

i
, (1)

where J is the hopping strength, and field operators ân, b̂n
represent the annihilation operators at the sites in the nth unit
cell, while their conjugates are associated with the correspond-
ing creation operators. The complex hopping terms arise due to
the specially introduced asymmetry of the link rings [33]. Note
that we measure frequencies with respect to a resonance of a
single isolated ring, such that the eigenvalues of Ĥ ccw are modal
frequency detunings with respect to this resonance.

Let us now consider a periodic lattice, which enables us to
compactly write the Hamiltonian in k-space as

Ĥ 0,ccw �
X
k

ψ†
k,ccw�d �k� · σ̂�ψk,ccw, (2)

where k is the crystal momentum, ψ k,ccw � �âk,ccw, b̂k,ccw�T ,
d � �d 0, d x , d y, d z� � �0, 2J�1� cos k�, 0, −2J sin k�, σ̂ are
Pauli matrices, and we now interpret the upper (â) and
lower (b̂) layers as corresponding to up and down pseudospin
degrees of freedom, respectively. The eigenvalues of Ĥ ccw are
ω��k� � �2

ffiffiffi
2

p
J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos k

p
. The first component, d 0, de-

scribes the symmetric part of the intra-leg coupling, which van-
ishes under our choice of hopping phase [33], 2J σ̂x is analogous
to a Zeeman field, and 2J cos kσ̂x and −2J sin kσ̂z resemble
intrinsic and Rashba-like spin-orbit couplings, respectively.

For the opposite excitation (clockwise), propagation is
governed by the time-reversed Hamiltonian Ĥ cw , which exhib-
its opposite hopping phases due to time-reversal symmetry
[37]. We introduce a total Hamiltonian composed of both

Fig. 1. Temporally indistinguishable photons within the temporal
resolution δt propagating through different delay lines can be tempo-
rally distinguishable given the delay provided by the ring resonator
waveguides is sensitive to disorder, i.e., random red or blue shifts
of the individual resonators. Insets below illustrate various possible
effects of disorder: (a) phase shift via the difference in phase velocities,
(b) difference in arrival times due to variation of the group velocities,
and (c) wavepacket distortion due to higher-order dispersion and
wavelength-dependent reflection.

Fig. 2. Schematic of the helical coupled-resonator optical wave-
guide (H-CROW). Pseudospin-momentum locking is achieved after
a certain propagation distance, where each sublattice exhibits definite
momentum for designated circulation mode, thereby facilitating a
disorder-resistant transport. As opposite circulations exhibit opposite
helicity, two co-propagating channels can be realized.
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circulations given in the direct product form, Ĥ tot �
Ĥ ccw ⊕ Ĥ cw . We obtain pseudospin-momentum locking in
the center of the passband (k � π), where ω � 0, dx � 0,
and the wave group velocity becomes dω�∕dk � �2J . It sup-
ports the most resistant light propagation against disorder, since
Htot�k� for the small momentum deviations k � π � Δk has
the form

Htot�π � Δk� ≈ 2Jdiag�Δk, −Δk, −Δk,Δk�, (3)

where Eq. (3) is written in the basis fj↺, ↑i, j↺, ↓i,
j↻, ↑i, j↻, ↓ig; the first index labels the circulation direction,
and the second indicates the pseudospins. Note that the off-
diagonal component describing pseudospin-flipping vanishes
in the first (linear) order of deviation.

At the band center, H-CROWs show the maximum
Anderson localization length and most resistant temporal pulse
propagation, since the most significant disorder is misalignment
of the rings’ resonant frequencies, which is diagonal in the sub-
lattice basis and does not flip the pseudospin [12,16,25,26,
33,38].

Importantly, we can employ the circulation degree of free-
dom to use H-CROWs as two-mode delay lines (see Fig. 2). By
exciting both circulations through different sublattices, the
simultaneous pseudospin-momentum locking phases (red
and blue) can be obtained. We now consider the propagation
of light in the presence of disorder and losses. For the sake of
simplicity, we only take the dominant on-site disorder into ac-
count, which has the form [33]

V̂ ϵ �
X
n

�V �a�
n,ϵâ†nân � V �b�

n,ϵ b̂†nb̂n�, (4)

where ϵ labels each disorder realization. We assume that each
on-site potential V �j�

n,ϵ has a Gaussian distribution with mean
zero and standard deviation U .

We first formulate equations for the field operators
ψ̂n � �ân, b̂n�T to calculate the transmission at a given fre-
quency ω; the equation reads [25,39]

iωψ̂n,j�ω� � i�Ĥ 0,j, ψ̂n,j�ω�� − κexψ̂n,j�ω��δn,1 � δn,L�
− κinψ̂n,j�ω� �

ffiffiffiffiffiffiffiffi
2κex

p
p̂in,j�ω�δn,1, (5)

where j � 1 (ccw) and j � 2 (cw) index counterclockwise and
clockwise circulation modes, respectively, κin is the intrinsic
scattering losses of each cavity, κex is coupling strength to the
input/output leads at each edge of the array, and L is the array
length. The input field entering the first unit cell is pin�ω�, and
we assume wave packets with identical temporal distributions
but opposite circulations and sublattices, which excite the two
helical modes.

The reflection (R) and transmission (T ) amplitudes can be
expressed for the two inputs as follows [24,25]:

R1�ω� �
���� pin�ω� −

ffiffiffiffiffiffiffiffi
2κex

p
a1�ω�

pin�ω�

����
2

,

T 1�ω� �
����

ffiffiffiffiffiffiffiffi
2κex

p
aL�ω�

pin�ω�

����
2

,

R2�ω� �
���� pin�ω� −

ffiffiffiffiffiffiffiffi
2κex

p
b1�ω�

pin�ω�

����
2

,

T 2�ω� �
����

ffiffiffiffiffiffiffiffi
2κex

p
bL�ω�

pin�ω�

����
2

, (6)

where operators without a “hat” refer to their corresponding
field components of sublattices a, b [40]. The derivation is
given in Appendix A. We note the following relation for the
output field operators [39]:

p̂out,1 � −
ffiffiffiffiffiffiffiffi
2κex

p
âL, p̂out,2 � −

ffiffiffiffiffiffiffiffi
2κex

p
b̂L: (7)

Given the transmission spectrum, we can compute the wave
packets’ group delay times τj via

τj �
1

i
d

dω

� pout,j�ω�
jpout,j�ω�j

�
�j � 1, 2�, (8)

where pout,j�ω� refers to the corresponding field component.
This quantity measures the transit time of a wave packet
through the device. The distribution of delay times provides
a measure of the sensitivity of the system to disorder [26].

We present in Fig. 3(a) intensity profiles in the first half of
an L � 20 H-CROW for a monochromatic input at ω � 0
(the middle of the transmission band), averaged over an ensem-
ble of 500 disorder realizations. For comparison, Fig. 3(b)
shows the intensity profile of a regular CROW. The numerical
calculations are performed using parameters similar to the
experiments in Refs. [25,26]: κex � 0.5J , κin � 0.1J , and dis-
order standard deviation U � 0.8J . In physical units, this cor-
responds to an operating wavelength λ ≈ 1550 nm, with
κex ∼ 15 GHz, κin ∼ 2 GHz, and hopping strength
J ∼ 30 GHz [25,26]. In the H-CROW, the intensity remains
confined to the upper (a) sublattice, signifying pseudospin-
momentum locking, with the attenuation of the intensity along
the array occurring only due to the internal losses κin. The regu-
lar CROW also exhibits Anderson localization, resulting in
more rapid attenuation of the intensity in Fig. 3(b).

We plot in Fig. 3(c) the transmission spectra in Eq. (6),
where the shaded regions indicate the 65% confidence intervals
[25]. H-CROWs achieve higher transmission than regular
CROWs through the entire passband, with almost five times
higher transmission at ω � 0 and smaller deviations between
different disorder realizations as a result of the disorder resistant
unidirectional propagation. Figure 3(d) demonstrates that
H-CROWs maintain the amplitude of the output field for a
broad range of disorder strengths U , while CROWs show in-
creasingly poor performance as U increases. Based on these re-
sults, we use U � 0.8J as a disorder strength in the following,
as this regime clearly illustrates the advantage of H-CROWs
versus regular CROWs in the presence of the moderate disorder
typically present in experiments [24]. We note that the com-
paratively lower transmission of the H-CROW for weak dis-
order is due to nonoptimal input coupling, which can be
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improved by, e.g., coupling the input waveguide to the second
unit cell of the array.

The effects of disorder on the group delay time versus fre-
quency detuning are presented in Fig. 3(e). We see that
H-CROWs exhibit a slightly smaller average delay but much
lower fluctuations. Furthermore, the statistics of delay times
in the vicinity of ω � 0 presented in Fig. 3(f ) show that
H-CROWs exhibit more ballistic transport than regular
CROWs; as for H-CROWs, the delay time distribution around
the root mean square average has a Gaussian shape with smaller
variance.

3. PRESERVATION OF PHOTON
INDISTINGUISHABILITY

In this section, we consider the transmission of two identical
photons forming a separable quantum state at the input and
analyze the degree of temporal photon indistinguishability at
the output of the H-CROW and CROW. Specifically, we con-
sider an input state j11icw,ccw , with one photon in the clockwise
mode and a temporally identical photon in the counterclock-
wise mode. The output state in the frequency domain has the
form

jouti � ϕ̂aϕ̂bj00iab
�

Z
dω

Z
dω 0pout,1�ω�pout,2�ω 0�â†out�ω�b̂†out�ω 0�j00iab,

(9)

where the subscripts a and b indicate the Hilbert space corre-
sponding to upper/lower part of output port with the field op-
erators ϕ̂a∕b∶�

R
dωp̂out,1∕2�ω� composed of field creation

operators of each output port â†out, b̂†out. Note that we are work-
ing with scalar fields, assuming a fixed polarization state.

We compare a degree of the temporal overlap of the two
photons after each one propagates through a different part
of the device by calculating the coincidence probability. It
was the first experimental witness of quantum property, as
Hong et al. showed quantumness by generating entangled pho-
tons and measuring their coincidence counts versus the con-
trolled delay to one of the paths [34]. When the total time
delay is zero, coincidence rates after a 50:50 beam splitter reach
a minimum and vanish due to the quantum interference when
photons are temporally indistinguishable. Accordingly, we
analyze the photon interference at the output with a tunable
temporal delay, as illustrated in Figs. 4(a) and 4(b). When a
two-photon output state passes a beam splitter with ratio r∶t,
where r and t represent reflection and transmission, respec-
tively, the field operators obey the unitary relation [41]�

ĉ†

d̂ †

�
�

�
t ir
ir t

��
â†out
b̂†out

�
, (10)

where t2 � r2 � 1 (t, r ∈ R) and ĉ, d̂ indicate the field oper-
ators of upper/lower sides after passing the beam splitter. We
calculate the coincidence probability of the simultaneous
“clicks” with the two single-photon detectors, Pcoin, using
the projection operator P̂c⊗ P̂d∶�

R
dωĉ†�ω�j0ih0jĉ�ω�⊗R

dω 0d̂ †�ω 0�j0ih0jd̂ �ω 0� [42]. Thus, Pcoin � Tr�ρP̂c ⊗ P̂d �,
where the density matrix is ρ � joutihoutj. Now, we introduce
a tunable delay parameter between two outputs τc , which
controls the temporal overlap between the photons before their
interference on the beam splitter. Without loss of generality, we
apply this delay to the lower output port and obtain a final ex-
pression for a balanced beam splitter (t � r � 1∕

ffiffiffi
2

p
) [43]:

Pcoin�τc� �
1

2

�
1 −

j R dωp	1�ω�p2�ω�eiωτc j2R
dωjp1�ω�j2

R
dω 0jp2�ω 0�j2

�
: (11)

The second part of the above equation defines the visibility V ,
V � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2Pcoin

p
[41], which quantifies the degree of interfer-

ence. In quantum mechanics, it is also referred to as indistin-
guishability of photons [44]. The meaning of coincidence
probability is thus the resultant distribution of indistinguishabil-
ity [45]. Note that coincidence probability is zero for an ideal
case of identical single photons, indicating indistinguishability
preservation, since the transformation for the indistinguishable
photon input state reads [46,47]

j11iab →
1ffiffiffi
2

p �j20iab � j02iab�: (12)

Conversely, for a very large time delay exceeding the wave packet
temporal width, the photons do not interfere with each other,
and the coincidence probability becomes 1/2 for a balanced

Fig. 3. Classical wave transport through H-CROWs and CROWs
in the presence of moderate disorder U � 0.8J and intrinsic losses
κin � 0.1J . (a), (b) Disorder-averaged field intensity profiles at
ω � 0 in the first 10 rings of an L � 20 (a) H-CROW and
(b) CROW. (c) Frequency-dependent transmission spectra. Solid lines
indicate the disorder average; shaded regions represent 65% confi-
dence interval. Maximum of average is −15.8 and −22.8 dB at
ω � 0 for the H-CROW and CROW, respectively. (d) Dependence
of the transmission at ω � 0 on the disorder strength U . (e) Wave
packet delay time as a function of the input frequency.
(f ) Distribution of delay times at ω � 0, where τ̄ is the root mean
square delay.
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(50:50) beam splitter, corresponding to distinguishable photons
according to the calculations in Appendix B.

We perform a comparison against regular CROWs with the
same input and same propagation length, as illustrated in
Figs. 4(a) and 4(b). We consider wave packets with a
Gaussian envelope at the input, i.e., pin�ω� � exp�−ω2∕2σ2�,
where σ � 0.5J is the envelope width. We plot in Fig. 4(c) the
calculated coincidence probability versus controlled time delay
after propagation through the 20-ring CROW, as discussed
above. We note that the separable two-photon state is insensi-
tive to the relative phase delay accumulated along the different
paths, as sketched in Fig. 1(a), but can be affected by disorder-
induced variations in the group delay and wave packet distor-
tions, as indicated in Figs. 1(b) and 1(c). We observe that the
minimum coincidence probability for H-CROWs remains
close to zero (≈2 × 10−4), indicating photon indistinguishabil-
ity is well-preserved. On the contrary, for regular CROWs, the
mean minimum coincidence probability is 0.22, which means
that photons become partially distinguishable due to disorder.
Even though the two photons with opposite spins travel along
different disordered paths, the temporal shape of photons at the
H-CROW outputs remains almost identical or indistinguish-
able, as a result of disorder-resistant transport. This advantage
becomes more pronounced for longer CROWs, as shown in
Fig. 4(d). The minimum coincidence for H-CROWs remains
small (≲ 4 × 10−3), whereas the minimum coincidence proba-
bility for the regular CROWs keeps increasing, indicating

reduced indistinguishability as the length of the delay line
increases.

4. PROTECTION OF PHOTON ENTANGLEMENT

We now aim to show that H-CROWs can preserve a peculiar
quantum property of transmitted photons, entanglement
inherently originating from the quantum coherence. Let us
consider an N00N state as an input, jN∶∶N i∶� �jN0i�
j0N i�∕ ffiffiffi

2
p

. Hereafter we omit the ‘ab’ notation. Such states
are strongly sensitive to all effects of the disorder, as sketched
in Fig. 1, including phase fluctuations [48], in contrast with the
separable states we analyzed in the previous section. The cor-
responding output state in the frequency domain jouti is

jouti � 1ffiffiffi
2

p ffiffiffiffiffiffi
N !

p �ϕ̂N
a � ϕ̂N

b �j00i

� 1ffiffiffiffiffiffiffiffi
2N !

p
�Z YN

i�1

dωip1�ωi�â†out�ωi�

�
Z YN

i�1

dωip2�ωi�b̂†out�ωi�
�
j00i, (13)

where ϕ̂j are the output field operators introduced in the pre-
vious section. Let us consider the two-photon state with
N � 2, which can be simply created from a separable state
by passing it through a balanced beam splitter before coupling
into the CROW. The output state, after applying the time de-
lay (τc) but before the very last interference stage, can be ex-
pressed as

jout�τc�ibef �
1

2

Z
dω1dω2� p1�ω1�p1�ω2�â†out�ω1�â†out�ω2�

� p2�ω1�p2�ω2�b̂†out�ω1�b̂†out�ω2�ei�ω1�ω2�τc �j00i:
(14)

We first analyze the case of indistinguishable photons at the
output and note that, in this ideal situation, the disorder can
introduce a phase difference θ between the photons in two out-
put ports. The transformation of such a state by output of a
50:50 beam splitter implements a reversed Hong–Ou–Mandel
(HOM) interference [49], which we express as follows:
1ffiffiffi
2

p �j20i � eiθj02i�

→
1

2
ffiffiffi
2

p ��1 − eiθ�j20i �
ffiffiffi
2

p
i�1� eiθ�j11i − �1 − eiθ�j02i�:

(15)

The coincidence probability is then

Pcoin �
1� cos θ

2
: (16)

Note that the coincidence probability can oscillate, even
though the entangled state remains pure. This is due to the
phase sensitivity of the N00N state [50].

Next, we determine the coincidence probability in the gen-
eral case, considering all the effects due to disorder. We com-
pute the density matrix of the output state ρ � joutihoutj
using the projection operators

Fig. 4. (a), (b) Schematics of coincidence measurement using tight-
binding models of an H-CROW and a pair of regular CROWs. We
consider measurements for two photons exhibiting opposite helicity
with controlled delay time τc before a 50:50 beam splitter (BS)
and resulting coincidence probability of two photons to produce si-
multaneous “clicks” of single-photon detectors. (c) Coincidence versus
controlled delay time for 20-site long CROW structures.
(d) Minimum coincidence values with respect to the number of sites.
Blue solid line and dots represent the average for H-CROWs and red
for CROWs. Error bars indicate 65% confidence interval for 500 dis-
order realizations.
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j20ih20j

� 1

2

Z
dω1dω2â

†
out�ω1�â†out�ω2�j00ih00jâout�ω2�âout�ω1�,

j02ih02j

� 1

2

Z
dω1dω2b̂

†
out�ω1�b̂†out�ω2�j00ih00jb̂out�ω2�b̂out�ω1�,

j11ih11j

�
Z

dω1dω2â
†
out�ω1�b̂†out�ω2�j00ih00jb̂out�ω2�âout�ω1�,

(17)

respectively. Again, âout, b̂out denote annihilation operators on
upper and lower output legs, respectively. The coincidence
probability with the normalized output Tr�ρ� � 1 is
given by

Pcoin�τc� �
1

2

�
1� �R dωp	1�ω�p2�ω�eiωτc �2 � c:c:

�R dωjp1�ω�j2�2 � �R dωjp2�ω�j2�2
	
:

(18)

In agreement with the expression written in Fock basis in
Eq. (16), here phase fluctuations θ arise from phase mismatches
between the fields p1,2�ω�. Note that the coincidence probabil-
ity is h11jρj11i, which we derive in Appendix C.

To quantify the mixture of the output state induced by dis-
order, we also analyze another quantity, the purity Tr�ρ2�, which
is bounded by 1∕d ≤ Tr�ρ2� ≤ 1, where d is the dimension of
Hilbert space, i.e., d � 2 for the two-photon case. The maxi-
mum value corresponds to pure states and the minimum to
fully mixed states. The state purity after passing the controlled
delay is

Tr�ρ2�τc��

� 1� 2

��j R dωp	1p2e
iωτc j2�2 − �R dωjp1j2

R
dω 0jp2j2�2

��R dωjp1j2�2 � �R dωjp2j2�2�2
	
,

(19)

where we omit the integral variable ω,ω 0 to simplify notation.
The form of Eq. (19) reveals that the output state remains

pure when indistinguishability is preserved. Namely, since we
consider noninteracting particles, we can relate the N00N state
purity to the coincidence probability of the separable input
state j11iab, according to Eq. (11). Since Pcoin�τc� ≈ 0, we have
j R dωp	1p2e

iωτc j2 ≈ �R dωjp1j2��
R
dω 0jp2j2�, indicating that

the two output fields p1, p2 have identical intensities and group
delays. The expression in Eq. (19) thereby approaches 1, even
though coincidence probability for j2∶∶2imay fluctuate due to
the phase sensitivity of N00N state.

To verify this reasoning, we plot in Figs. 5(a) and 5(b) the
distributions of coincidence probability for N00N states trans-
mitted through H-CROWs and regular CROWs, respectively,
with a zero-controlled time delay (τc � 0). We observe that, for
H-CROWs, the oscillation of probability occurs in the full
range of [0,1], which is evidence that entanglement is pre-
served. In contrast, the coincidences from the regular CROWs
show a peak at 0.5, indicating the output state is mixed and the
entanglement is lost due to disorder.

We additionally show in Fig. 5(c) the average purity and the
65% confidence interval versus the delay time. We see that
purity stays at 1 for H-CROWs at zero delay, while CROWs
exhibit loss of coherence with huge fluctuations due to disorder.
As the delay is increased, entangled photons in H-CROW be-
come a completely mixed state with purity 0.5, as their coher-
ence is washed out. On the other hand, in the regular CROW
the average purity remains higher but with large fluctuations.
This is because the transmission amplitude is sensitive to the
disorder. Suppose we obtain the much higher transmission
through one leg compared with the other. Then, according
to Eq. (19), the temporal purity will be unity regardless of con-
trolled delay. In addition, large group delay fluctuation in
CROWs also affects the distribution of purity. For instance,
even though we apply time delay to one of the waveguides,
packets can be detected at the same moment due to the group
delay induced by disorder.

To further quantify the effect of disorder, we consider the
entanglement entropy Sa, which indicates the capacity for en-
coding quantum information [51],

Sa∶� −Tra�ρa ln�ρa��, (20)
where ρa � Trb�ρ�τc��. Note that, as coherence terms vanish by
partial trace, the controlled delay does not affect the entropy.
We compute the entanglement entropy in Appendix C,

Sa � −x ln x − �1 − x�ln�1 − x�, (21)
where for the two-photon (N � 2) N00N state we have

x � �R dωjpout,1�ω�j2�2
�R dωjpout,1�ω�j2�2 � �R dωjpout,2�ω�j2�2

: (22)

The entanglement is maximized when x � 0.5, corresponding to
identical intensities at the two output ports. This demonstrates

Fig. 5. Disorder-robust transmission of N � 2 N00N states using
the H-CROW. (a), (b) Statistics of the output coincidence probability
for the (a) H-CROW and (b) regular CROWs. (c) Output state purity
versus controlled delay time for the H-CROW (blue) and regular
CROW (red), with error bars indicating 65% confidence interval.
(d) Exponentiated entanglement entropy of the upper output port,
exp�Sa�, as a function of the photon number N . exp�Sa� distinguishes
maximally entangled states exp�Sa� � 2 from separable states
exp�Sa� � 1. We use an ensemble of 500 disorder realizations and
disorder strength U � 0.8J .
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the higher capacity of H-CROWs, which exhibit almost identical
output intensities from the upper and lower ports. In contrast,
CROWs yield poor capacity as the intensity ratio differs due
to disorder.

We show in Fig. 5(d) the scaling of the entanglement en-
tropy with the number of photons, revealing huge fluctuations
and loss of entanglement for the regular CROW, while the
H-CROW can preserve some amount of entanglement. As we
increase N , we observe larger fluctuations of the entanglement
entropy. The entangled photons in the regular CROW become
a mixed state due to the large transmission fluctuations, i.e.,
appreciable transmission only occurs along one leg. Thus, en-
tanglement entropy becomes 0 and the error bar of entangle-
ment entropy becomes smaller. We emphasize that, for a given
delay or N , the H-CROW exhibits better performance of pro-
tecting entanglement than the regular CROW. One caveat on
entanglement entropy is that it is not sensitive to the controlled
delay time, as it only depends on the intensity at each output
port. To obtain the maximum entanglement entropy, the in-
tensity at each output port should be identical, which can be
seen from Eq. (22).

5. CONCLUSION

In this paper, we have studied the propagation of quantum
states of light through helical coupled-resonator waveguides
(H-CROWs). Regular CROWs can serve as delay lines in in-
tegrated photonic circuits; however, they exhibit strong sensi-
tivity to fabrication disorder preventing reliable transmission
of wave packets. H-CROWs exploit an additional sublattice
degree of freedom to achieve disorder-resistant transport, which
arises due to one-way modes at the center of their transmission
band, whose propagation direction is fixed by the excited sub-
lattice (known as pseudospin-momentum locking). Using
numerical solutions of tight-binding models describing
H-CROWs and regular CROWs, we have shown that the for-
mer can be used to more reliably transport quantum states of
light in the presence of disorder.

We first showed that transmission probability and wave
packet delay times have narrower fluctuations and provide
more ballistic-like transport compared with regular CROWs.
Next, we showed that two identical photons transmitted
through an H-CROW can preserve the indistinguishability of
their temporal wave packets and, accordingly, demonstrate the
quantum Hong–Ou–Mandel interference. Finally, we showed
that path-entangled two-photon N00N states are preserved as
pure entangled states, while the effect of disorder is only ex-
pressed through the accumulation of a relative phase between
the photon pairs. We note that this relative phase fluctuation
can be compensated by simply placing a single tunable phase
shifter at one of the output ports [38]. The H-CROWs per-
form better at reliably transporting both types of quantum
states, while quantum features are strongly suppressed by dis-
order in regular CROWs.

In the future, it will be interesting to generalize our findings
to multimode entangled states and multimode H-CROWs.
Moreover, in this work we considered weakly coupled
resonators described by the tight binding approximation, sim-
ilar to the experiments in Refs. [25,26]. In order to increase the

operating bandwidth, it would be essential to consider more
strongly coupled lattices, which must be modeled using the
transfer matrix method [33]. We expect that our results can
provide a practical way to create robust integrated photonic de-
lay lines, which can serve as essential components facilitating
reliable generation and guiding of the quantum state of light
for multiple applications, including scalable quantum informa-
tion processing.

APPENDIX A. INPUT–OUTPUT RELATION

When we induce the coupling between an external probe wave-
guide characterized by field operator p̂ and the system, the
dynamics are governed by total Hamiltonian,

Ĥ tot � Ĥ sys � Ĥ env � Ĥ int, (A1)

where Ĥ sys is our Hamiltonian of interest. Hamiltonians de-
scribing the environment Ĥ env and the interaction between
system and environment Ĥ int are given by

Ĥ env �
Z

∞

−∞
dωωp̂†�ω, t�p̂�ω, t�,

Ĥ int � i
Z

∞

−∞
dω

ffiffiffiffiffiffiffiffi
2κex

p
�â†�t�p̂�ω, t� − h:c:�, (A2)

where κex is an external coupling parameter independent of fre-
quency, â is the coupling field operator of system, e.g., â1 for
upper input port. Note that p̂in lives in a different Hilbert space
from the resonator field operators âj, as it represents the field
operator of environment. Besides, negative frequencies are al-
lowed, as we work in a rotating frame at a frequency much
larger than typical bandwidths we consider [39]. Here, we as-
sume that the probe waveguide has an almost continuous spec-
trum. The Heisenberg equation of the bath operator reads [39]

d

dt
p̂�ω, t� � −iωp̂�ω, t� −

ffiffiffiffiffiffiffiffi
2κex

p
â�t�: (A3)

The solution of the above is

p̂�ω, t� � e−iω�t−t0�p̂�ω, t0� −
ffiffiffiffiffiffiffiffi
2κex

p Z
t

t0
dt 0e−iω�t−t 0�â�t 0�,

(A4)

where t0 is the initial time. Here, the input field p̂in�t� is de-
fined as [39]

p̂in�t�∶�
1ffiffiffiffiffi
2π

p
Z

∞

−∞
dωe−iω�t−t0�p̂�ω, t0� �t > t0�, (A5)

which is a Fourier transform of the input spectrum. Then,
Eq. (A4) can be written differently:Z

dωp̂�ω, t� � p̂in�t� −
ffiffiffiffiffiffiffiffi
2κex

p Z
∞

−∞
dω

Z
t

t0
dt 0e−iω�t−t 0�â�t 0�

� p̂in�t� −
ffiffiffiffiffiffiffiffi
2κex

p
2

â�t�, (A6)

where we use Θ�t�∶� R
t
−∞ dt 0δ�t 0�, andΘ�0� � 1∕2. We can

introduce another solution by defining final time t1, which
yields the solution
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p̂�ω, t� � e−iω�t−t1�p̂�ω, t1� −
ffiffiffiffiffiffiffiffi
2κex

p Z
t

t1
dt 0e−iω�t−t 0�â�t 0�:

(A7)

Let us define output field operator p̂out, where

p̂out�t�∶�
1ffiffiffiffiffi
2π

p
Z

dωe−iω�t−t1�p̂�ω, t1� �t < t1�, (A8)

which yieldsZ
dωp̂�ω, t� � p̂out �

ffiffiffiffiffiffiffiffi
2κex

p Z
∞

−∞
dω

Z
t1

t
dt 0e−iω�t−t 0�â�t 0�

� p̂out�t� �
ffiffiffiffiffiffiffiffi
2κex

p
2

â�t�: (A9)

We can hence find the identity between input and output [39]:

p̂in�t� − p̂out�t� �
ffiffiffiffiffiffiffiffi
2κex

p
â�t�, (A10)

which yields the representations of reflection and transmission
coefficients described in Eq. (6).

APPENDIX B. COINCIDENCE PROBABILITY
FOR GENERAL BEAM SPLITTER

Suppose identical photons come toward a beam splitter (BS)
from the opposite ports as depicted in Figs. 4(a) and 4(b).
The BS exhibits the ratio r∶t, where r, t (∈ R) are the reflec-
tivity and transmissivity, respectively, r2 � t2 � 1. The trans-
formation for indistinguishable photons reads [46,47]

j11iab → irt
ffiffiffi
2

p
j20iab � irt

ffiffiffi
2

p
j02iab � �t2 − r2�j11iab,

(B1)

where modes a and b indicate the photons coming from upper
and lower parts, respectively. The coincidence probability is
now given by Pcoin � �t2 − r2�2. Minimum coincidence occurs
when r � t � 1∕

ffiffiffi
2

p
, yielding 0 coincidence. On the other

hand, given two photons are distinguishable, Eq. (B1) is then

j1001ia1b1a2b2 → irtj1010ia1b1a2b2 � irtj0101ia1b1a2b2
� t2j1001ia1b1a2b2 − r2j0110ia1b1a2b2 , (B2)

and it turns out that the coincidence probability of measuring
photons on each detector simultaneously is Pcoin � t4 � r4.
Then, 0.5 is the lowest value possible for a classical field when
the splitting ratio is 50:50. Hence, Pcoin � 0.5 implies the
boundary between quantum and classical cases, where a lower
value is only possible due to quantum interference between
(partially) indistinguishable photons [41,47,52].

Similar to our analysis for j11i state, we calculate the trans-
formation of the j2∶∶2i state after a beam splitter,

1ffiffiffi
2

p �j20iab � j02iab�

→
1ffiffiffi
2

p ��t2 − r2�j20iab − �t2 − r2�j02iab � 2
ffiffiffi
2

p
irtj11iab�:

(B3)

For distinguishable particles, the beam splitter transforma-
tion is

1ffiffiffi
2

p �j1010ia1b1a2b2 � j0101ia1b1a2b2�

→
1ffiffiffi
2

p ��t2 − r2�j1010ia1b1a2b2 − �t2 − r2�j0101ia1b1a2b2
� 2irtj0110ia1b1a2b2 � 2irtj1001ia1b1a2b2 �: (B4)

When a balanced beam splitter is used, coincidence probability
becomes 1 for both cases, but note that one has which-way
information and the other does not. Then, coincidence prob-
ability does not give enough information on distinguishability;
thus, another measure of entanglement should be considered
such as entanglement entropy, as we discuss in Section 4.

APPENDIX C. DENSITY MATRIX OF 2002 STATE

To compute coincidence probability and entanglement en-
tropy, one has to introduce a density matrix defined as an outer
product of output states. Density matrix of output state for
a j2∶∶2i input in terms of Fock basis has the form with
normalization,

ρbef �τc� �
1

A� B

�
A C�τc�

C	�τc� B

�
, (C1)

where

A � h20jρbef �τc�j20i �∶ ρbef ,2020�
�Z

dωjpout,1�ω�j2
�
2

,

B � ρbef ,0202 �
�Z

dωjpout,2�ω�j2
�
2

,

C�τc� � ρbef ,2002 �
�Z

dωp	out,1�ω�pout,2�ω�eiωτc
�
2

: (C2)

Note that coincidence probability (h11jρbef j11i) is zero before
the last beam splitter since the modes are decoupled in our sys-
tem. After the photon state exhibits interference in the last
beam splitter, the density matrix ρaf �τc� becomes

ρaf ,2020 � ρaf ,0202 � −ρaf ,2002 � −ρaf ,0220

� 1

4�A� B� �A� B − C�τc� − C	�τc��,

ρaf ,2011 � ρ	af ,1120 � −ρaf ,0211 � −ρ	af ,1102

� i
2

ffiffiffi
2

p �A� B� �A − B � C�τc� − C	�τc��,

ρaf ,1111 �
1

2�A� B� �A� B � C�τc� � C	�τc��, (C3)

where each component labels the basis fj20i, j11i, j02ig. Note
that the last term of the above equations indicates the coinci-
dence probability in Eq. (18). This expression can be obtained
equivalently using the unitary operator in the operator basis we
defined in Eq. (10). The unitary matrix for two particles in the
tensor product form reads

U ⊗ U∶� U 2 �
1

2

0
B@

1 i i −1
i 1 −1 i
i −1 1 i
−1 i i 1

1
CA. (C4)
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As we consider indistinguishable particles, it can be contracted
on the basis of fj20i, j11i, j02ig,

U 2 �
1

2

0
@ 1

ffiffiffi
2

p
i −1ffiffiffi

2
p

i 0
ffiffiffi
2

p
i

−1
ffiffiffi
2

p
i 1

1
A: (C5)

One can check that Eq. (C3) is equivalent to ρaf �τc� �
U 2ρbef �τc�U †

2. The purity Tr�ρ2� thus has the form

Tr�ρ2�τc�� �
A2 � B2 � 2jC�τc�j2

�A� B�2 � 1� 2
jC�τc�j2 − AB
�A� B�2 :

(C6)

Note that the purity expressions are identical for ρbef and ρaf
due to the property of unitary transform. Positivity of each term
in the numerator guarantees positivity of purity, and it turns
out to be equal or less than unity because of Hölder’s inequality,
AB ≥ jC�τc�j2 [53].

Entanglement entropy can be obtained from the above in-
gredients. Tracing out the lower port degree of freedom (b)
yields the expression about the reduced density matrix ρa,

Sa � −Tra�ρa ln�ρa��

� −
A

A� B
ln

A
A� B

−
B

A� B
ln

B
A� B

: (C7)

Note the controlled delay does not affect the entanglement en-
tropy as off-diagonal components C ,C	 representing phase
mismatches between fields do not play any role; only the rel-
ative intensity of two ports determines this entanglement
entropy.
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42. A. M. Brańczyk, “Hong-Ou-Mandel interference,” arXiv:1711.00080

(2017).
43. J. G. Titchener, M. Gräfe, R. Heilmann, A. S. Solntsev, A. Szameit,

and A. A. Sukhorukov, “Scalable on-chip quantum state tomography,”
npj Quantum Inf. 4, 19 (2018).

44. M. Zych, “Quantum systems under gravitational time dilation,” Ph.D.
thesis (University of Vienna, 2015).

45. T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Time-resolved two-
photon quantum interference,” Appl. Phys. B 77, 797–802 (2003).

46. X. Y. Zou, L. J. Wang, and L. Mandel, “Induced coherence and indis-
tinguishability in optical interference,” Phys. Rev. Lett. 67, 318–321
(1991).

47. G. Weihs and A. Zeilinger, “Photon statistics at beam-splitters: an es-
sential tool in quantum information and teleportation,” in Coherence
and Statistics of Photons and Atoms (Wiley, 2001), pp. 262–288.

48. H. Lee, P. Kok, and J. P. Dowling, “A quantum Rosetta stone for inter-
ferometry,” J. Mod. Opt. 49, 2325–2338 (2002).

49. S. Paesani, M. Borghi, S. Signorini, A. Maïnos, L. Pavesi, and A.
Laing, “Near-ideal spontaneous photon sources in silicon quantum
photonics,” Nat. Commun. 11, 2505 (2020).

50. S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B.
Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the
shot-noise limit in photonic quantum metrology,” Nat. Photonics 11,
700–703 (2017).

51. M. A. Nielsen and I. Chuang, Quantum Computation and Quantum
Information (AAPT, 2002).

52. S. Sadana, D. Ghosh, K. Joarder, A. N. Lakshmi, B. C. Sanders, and
U. Sinha, “Near-100% two-photon-like coincidence-visibility dip with
classical light and the role of complementarity,” Phys. Rev. A 100,
013839 (2019).

53. E. De Faria and W. De Melo,Mathematical Aspects of Quantum Field
Theory (Cambridge University, 2010), Vol. 127.

B24 Vol. 8, No. 10 / October 2020 / Photonics Research Research Article

https://doi.org/10.1103/PhysRevLett.121.023901
https://doi.org/10.1088/2040-8978/12/10/104008
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1038/s41534-018-0063-5
https://doi.org/10.1007/s00340-003-1337-x
https://doi.org/10.1103/PhysRevLett.67.318
https://doi.org/10.1103/PhysRevLett.67.318
https://doi.org/10.1080/0950034021000011536
https://doi.org/10.1038/s41467-020-16187-8
https://doi.org/10.1038/s41566-017-0011-5
https://doi.org/10.1038/s41566-017-0011-5
https://doi.org/10.1103/PhysRevA.100.013839
https://doi.org/10.1103/PhysRevA.100.013839

	XML ID funding

