• Infrared and Laser Engineering
  • Vol. 45, Issue 3, 320002 (2016)
Zhu Jun1, Qin Liuli2, and Song Shuxiang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201645.0320002 Cite this Article
    Zhu Jun, Qin Liuli, Song Shuxiang. Characteristic analysis MIM waveguide amplifier by SPASER technology[J]. Infrared and Laser Engineering, 2016, 45(3): 320002 Copy Citation Text show less
    References

    [1] Stiles P L, Dieringer D J, Shah N C, et al. Surface-enhanced Raman spectroscopy[J]. Ann Rev Anal Chem, 2008, 1: 601-626.

    [2] Anker J N, W Paige H, Ulga L, et al. Biosensing with plasmonic nanosensors[J]. Nature Mater, 2008, 7(6): 442-453.

    [3] Homola J. Surface plasmon resonance sensors for detection of chemical and biological species[J]. Chem Rev, 2008, 108: 462-493.

    [4] Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems[J]. Phys Rev Lett, 2003, 90: 027402.

    [5] Li K, Li X, Stockman M I, et al. Surface plasmon amplification by stimulated emission in nanolenses[J]. Phys Rev, 2005, 71: 115409.

    [6] Protsenko I E, Uskov A V, Zaimidoroga O A, et al. Dipole nanolaser[J]. Phys Rev A, 2005, 71: 063812.

    [7] Stockman M I. Spasers explained[J]. Nature Photon, 2008, 2: 327-329.

    [8] Chang S W, Ni C Y A, Chuang S L. Theory for bowtie plasmonic nanolasers[J]. Opt Express, 2008, 16(14): 10580-10595.

    [9] Rosenthal A S, Ghannam T. Dipole nanolasers: a study of their quantum properties[J]. Phys Rev A, 2009, 79: 043824.

    [10] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photon, 2010, 4: 83-91.

    [11] Lawandy N M. Localized surface plasmon singularities in amplifying media[J]. Appl Phys Lett, 2004, 85: 5040-5042.

    [12] Stockman M I. The spaser as a nanoscale quantum generator and ultrafast amplifier[J]. J Opt, 2010, 12: 024004,

    [13] Noginov M A, Zhu G, Bahoura M, et al. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium[J]. Opt Lett, 2006, 31(20): 3022-3024.

    [14] Gordon J A, Ziolkowski R W. The design and simulated performance of a coated nano-particle laser[J]. Opt Express, 2007, 15(5): 2622-2653.

    [15] Quinten M, Leitner A, Krenn J R, et al. Electromagnetic energy transport via linear chains of silver nanoparticles[J]. Opt Lett, 1998, 23: 1331-1333.

    [16] Citrin D S. Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium[J]. Opt Lett, 2006, 31:98-100.

    [17] Thylén L, Holmstrom P, Bratkovsky A, et al. Limits on integration as determined by power dissipation and signal-to-noise ratio in loss-compensated photonic integrated circuits based on metal/quantum-dot materials[J]. IEEE J Quant Electron, 2010, 46(4): 518-524.

    [18] Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser[J]. Nature, 2009, 460(7259): 1110-1113.

    Zhu Jun, Qin Liuli, Song Shuxiang. Characteristic analysis MIM waveguide amplifier by SPASER technology[J]. Infrared and Laser Engineering, 2016, 45(3): 320002
    Download Citation