• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 4, 1730004 (2017)
Liming Liu and Huan Qin*
Author Affiliations
  • Ministry of Education Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
  • show less
    DOI: 10.1142/s179354581730004x Cite this Article
    Liming Liu, Huan Qin. Photoacoustic molecular imaging with functional nanoparticles[J]. Journal of Innovative Optical Health Sciences, 2017, 10(4): 1730004 Copy Citation Text show less
    References

    [1] A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 118, 305–324 (1880).

    [2] L. B. Kreuzer, C. K. N. Patel, “Nitric oxide air pollution: Detection by optoacoustic spectroscopy,” Science 173, 45–47 (1971).

    [3] C. Kim, C. Favazza, L. V. Wang, “ In vivo photoacoustic tomography of chemicals: High-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110, 2756–2782 (2010).

    [4] L. V. Wang, H. Song, “ Photoacoustic tomography: In vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).

    [5] L. Nie, X. Chen, “ Structural and functional photoacoustic molecular tomography aided by emerging contrast agents,” Chem. Soc. Rev. 43, 7132–7170 (2014).

    [6] L. V. Wang, J. Yao, “ A practical guide to photoacoustic tomography in the life sciences,” Nat. Meth. 13, 627–638 (2016).

    [7] Y. Shi, L. Xiang, Y. Yuan, D. Xing, Z. Ou, F. Zhou, “ Thermally confined shell coating amplifies the photoacoustic conversion efficiency of nanoprobes,” Nano Res. 9, 3644–3655 (2016).

    [8] A. Taruttis, G. M. van Dam, V. Ntziachristos, “ Mesoscopic and macroscopic optoacoustic imaging of cancer,” Cancer Res. 75, 1548–1559 (2015).

    [9] S. Yang, D. Xing, Q. Zhou, L. Xiang, Y. Lao, “ Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294–3301 (2007).

    [10] P. Beard, “ Biomedical photoacoustic imaging,” Interf. Focus 1, 602–631 (2011).

    [11] A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, Z. Cheng, “ Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).

    [12] Y. Lao, D. Xing, S. Yang, L Xiang, “ Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53, 4203 (2008).

    [13] M. Xu, L. V. Wang, “ Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).

    [14] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. J. J. L. Doose, J. J. Li, S. Weiss, “ Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307 (5709), 538–544 (2005).

    [15] P.-C. Li, C.-R. Chris Wang, D.-B. Shieh, C.-W. Wei, C.-K. Liao, C. Poe, S. Jhan, A.-A. Ding, Y.-N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express. 16, 18605–18615 (2008).

    [16] L. Xiang, Y. Yuan, D. Xing, Z. Ou, S. Yang, F. Zhou, “Photoacoustic molecular imaging with antibody-functionalized single-walled carbon nanotubes for early diagnosis of tumor,” J. Biomed. Opt. 14, 021008–021008-7 (2009).

    [17] C. Li, L. V. Wang. “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59 (2009).

    [18] G. Huang, S. Yang, Y. Yuan, D. Xing, “Combining X-ray and photoacoustics for in vivo tumor imaging with gold nanorods,” Appl. Phys. Lett. 99, 123701 (2011).

    [19] S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9, 2825–2831 (2009).

    [20] I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, “Silica-coating and hydrophobation of CTAB-stabilized gold nanorods,” Chem. Mater. 18, 2465–2467 (2006).

    [21] J. V. Jokerst, A. J. Cole, D. Van de Sompel, S. S. Gambhir, “Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice,” ACS Nano 6, 10366–10377 (2012).

    [22] H. Qin, T. Zhou, S. Yang, D. Xing, “Fluorescence quenching nanoprobes dedicated to in vivo photoacoustic imaging and high-efficient tumor therapy in deep-seated tissue,” Small 11, 2675–2686 (2015).

    [23] Y. Zhao, S. Yang, C. Chen, D. Xing, “Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement,” Opt. Lett. 39, 2565–2568 (2014).

    [24] J. Zhong, S. Yang, X. Zheng, T. Zhou, D. Xing, “ In vivo photoacoustic therapy with cancer-targeted indocyanine green-containing nanoparticles,” Nanomedicine 8, 903–919 (2013).

    [25] Z. Chen, S. Yang, D. Xing, “In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy,” Opt. Lett. 37, 3414–3416 (2012).

    [26] G. Gao, S. Yang, D. Xing, “Viscoelasticity imaging of biological tissues with phase-resolved photoacoustic measurement,” Opt. Lett. 36, 3341–3343 (2011).

    [27] F. Ye, S. Yang, D. Xing, “Three-dimensional photoacoustic imaging system in line confocal mode for breast cancer detection,” Appl. Phys. Lett. 97, 213702 (2010).

    [28] H. Wang, D. Xing, L. Xiang, “Photoacoustic imaging using an ultrasonic Fresnel zone plate transducer,” J. Phys. D Appl. Phys. 41, 095111 (2008).

    [29] Y. Yuan, S. Yang, D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100 (2), 023702 (2012).

    [30] B. Li, H. Qin, S. Yang, D. Xing, “ In vivo fast variable focus photoacoustic microscopy using an electrically tunable lens,” Opt. Express. 22, 20130–20137 (2014).

    [31] Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, L. V. Wang, “ Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 9, 1689–1692 (2004).

    [32] C. Kim, C. Favazza, L. V. Wang, “In vivo photoacoustic tomography of chemicals: High-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110, 2756–2782 (2010).

    [33] H. Chen, Z. Yuan, C. Wu, “Nanoparticle probes for structural and functional photoacoustic molecular tomography,” BioMed Res. Int. 2015, (2015).

    [34] K. Pu, A. J. Shuhendler, J. V. Jokerst, J. Mei, S. S. Gambhir, Z. Bao, J. Rao, “Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice,” Nat. Nanotechnol. 9, 233–239 (2014).

    [35] Y. Lyu, Y. Fang, Q. Miao, X. Zhen, D. Ding, K. Pu, “Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy,” ACS Nano 10, 4472–4481 (2016).

    [36] Y. Wang, D. Xu, S. Yang, D. Xing, “Toward in vivo biopsy of melanoma based on photoacoustic and ultrasound dual imaging with an integrated detector,” Biomed. Opt. Express 7, 279–286 (2016).

    [37] Y. Wang, S. Hu, K. Maslov, Y. Zhang, Y. Xia, L. V. Wang, “ In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure,” Opt. Lett. 36, 1029–1031 (2011).

    [38] J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, J. Stuart Nelsonw, “ A comparative study of photoacoustic and reflectance methods for determination of epidermal melanin content,” J. Invest. Dermatol. 122, 1432–1439 (2004).

    [39] M. Holotta, H. Grossauer, C. Kremser, P. Torbica, J. Volkl, G. Degenhart, R. Esterhammer, R. Nuster, G. Paltauf, W. Jaschke, “ Photoacoustic tomography of ex vivo mouse hearts with myocardial infarction,” J. Biomed. Opt. 16, 036007–036007-5 (2011).

    [40] J. Wang, B. Dong, B. Chen, Z. Jiang, H. Song, “ Selective photothermal therapy for breast cancer with targeting peptide modified gold nanorods,” Dalton Trans. 41, 11134–11144 (2012).

    [41] D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, X. Wang, “ Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent — an ex vivo preliminary rat study,” Nanotechnology 19, 095101 (2008).

    [42] Q. Zhang, N. Wang, P. Sharma, B. M. Moudgil, C. Wu, J. McNeill, H. Jiang, S. R. Grobmyer, “ Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography,” Nanotechnology 20, 395102 (2009).

    [43] S. Yang, F. Ye, D. Xing, “ Intracellular label-free gold nanorods imaging with photoacoustic microscopy,” Opt. Express. 20, 10370–10375 (2012).

    [44] H. Qin, T. Zhou, S. Yang, Q. Chen, D. Xing, “ Gadolinium (III)-gold nanorods for MRI and photoacoustic imaging dual-modality detection of macrophages in atherosclerotic inflammation,” Nanomedicine 8, 1611–1624 (2013).

    [45] K. Kim, S.-W. Huang, S. Ashkenazi, M. O’Donnell, A. Agarwal, N. A. Kotov, M. F. Denny, M. J. Kaplan, “ Photoacoustic imaging of early inflammatory response using gold nanorods,” Appl. Phys. Lett. 90, 223901 (2007).

    [46] M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, M. Motamedi, “ High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett. 7, 1914–1918 (2007).

    [47] A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, S. S. Gambhir, “ Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).

    [48] A. De La Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, S. S. Gambhir, “ Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice,” Nano Lett. 10, 2168–2172 (2010).

    [49] K. Li, B. Liu, “ Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging,” Chem. Soc. Rev. 43, 6570–6597 (2014).

    [50] Z. Ma, H. Qin, H. Chena, H. Yanga, J. Xua, S. Yang, J. Hu, D. Xing, “ Phage display-derived oligopeptide-functionalized probes for in vivo specific photoacoustic imaging of osteosarcoma,” Nanomed. Nanotechnol. Biol. Med. 13, 111–121 (2017).

    [51] X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, C. B. Murray, “ Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6, 2804–2817 (2012).

    [52] J. Choi, J. Yang, D. Bang, J. Park, J. S. Suh, Y. M. Huh, S. Haam, “ Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging,” Small 8, 746–753 (2012).

    [53] M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L. M. Liz-Marzán, “ Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).

    [54] A. E. Porter, M. Gass, K. Muller, J. N. Skepper, P. A. Midgley, M. Welland, “ Direct imaging of single-walled carbon nanotubes in cells,” Nat. Nanotechnol. 2, 713–717 (2007).

    [55] Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, H. Dai, “ Drug delivery with carbon nanotubes for in vivo cancer treatment,” Cancer Res. 68, 6652–6660 (2008).

    [56] N. W. Shi Kam, T. C. Jessop, P. A. Wender, H. Dai, “ Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells,” J. Am. Chem. Soc. 126, 6850–6851 (2004).

    [57] M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, R. B. Smalley, “ Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).

    [58] N. W. Shi Kam, M. O’Connell, J. A. Wisdom, H. Dai, “ Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction,” Proc. Natl Acad. Sci. USA 102, 11600–11605 (2005).

    [59] L. Wen, W. Ding, S. Yang, D. Xing, “ Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes,” Biomaterials 75, 163–173 (2016).

    [60] M.-C. Daniel, D. Astruc, “ Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).

    [61] Y.-S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, S. Emelianov, “ Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 18, 8867–8878 (2010).

    [62] S. L. Deutscher, “ Phage display in molecular imaging and diagnosis of cancer,” Chem. Rev. 110, 3196–3211 (2010).

    [63] S. Lee, J. Xie, X. Chen, “ Peptide-based probes for targeted molecular imaging,” Biochemistry 49, 1364–1376 (2010).

    [64] K. Chen, P. S. Conti, “ Target-specific delivery of peptide-based probes for PET imaging,” Adv. Drug Deliv. Rev. 62, 1005–1022 (2010).

    [65] J. Enback, P. Laakkonen, “Tumour-homing peptides: Tools for targeting, imaging and destruction,” 780–783 (2007). Google Scholar

    [66] J. Weber, P. C. Beard, S. E. Bohndiek, “ Contrast agents for molecular photoacoustic imaging,” Nat. Meth. 13, 639–650 (2016).

    [67] M. Zhang, M. Yudasaka, K. Ajima, J. Miyawaki, S. Iijima, “ Light-assisted oxidation of single-wall carbon nanohorns for abundant creation of oxygenated groups that enable chemical modifications with proteins to enhance biocompatibility,” ACS Nano 1, 265–272 (2007).

    [68] A. Krueger, L. Daniel, “ Functionality is key: Recent progress in the surface modification of nanodiamond,” Adv. Funct. Mater. 22, 890–906 (2012).

    [69] H. He, C. Gao, “ General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry,” Chem. Mater. 22, 5054–5064 (2010).

    [70] J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, J. M. Tour, “ Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode,” J. Am. Chem. Soc. 123, 6536–6542 (2001).

    [71] A. de la Zerda, S. Bodapati, R. Teed, S. Y. May, S. M. Tabakman, Z. Liu, B. T. Khuri-Yakub, X. Chen, H. Dai, S. S. Gambhir, “ Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice,” ACS Nano 6, 4694–4701 (2012).

    [72] Z. Liu, J. T. Robinson, X. Sun, H. Dai, “ PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” J. Am. Chem. Soc. 130, 10876–10877 (2008).

    [73] M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. Bruce Weisman, R. E. Smalley, “ Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002).

    [74] Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, Y. Lin, “ Graphene based electrochemical sensors and biosensors: A review,” Electroanalysis 22, 1027–1036 (2010).

    [75] M. Swierczewska, K. Young Choi, E. L. Mertz, X. Huang, F. Zhang, L. Zhu, H. Yeol Yoon, J. Hyung Park, A. Bhirde, S. Lee, X. Chen, “ A facile, one-step nanocarbon functionalization for biomedical applications,” Nano Lett. 12, 3613–3620 (2012).

    [76] P. Padmanabhan, A. Kumar, S. Kumar, R. K. Chaudhary, B. Gulyás, “ Nanoparticles in practice for molecular-imaging applications: An overview,” Acta Biomaterialia 41, 1–16 (2016).

    [77] W. He, K. Ai, C. Jiang, K. Ai, C. Jiang, Y. Li, X. Song, L. Lu, “ Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy,” Biomaterials (2017).

    [78] R. Alwi, S. Telenkov, A. Mandelis, A. Mandelis, T. Leshuk, F. Gu, S. Oladepo, K. Michaelian, “ Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics,” Biomed. Opt. Express 10, 2500–2509 (2012).

    [79] K. Yang, L. Zhu, L. Nie, X. Sun, L. Cheng, C. Wu, G. Niu, X. Chen, Z. Liu, “ Visualization of protease activity in vivo using an activatable photo-acoustic imaging probe based on CuS nanoparticles,” Theranostics 4, 134–141 (2014).

    Liming Liu, Huan Qin. Photoacoustic molecular imaging with functional nanoparticles[J]. Journal of Innovative Optical Health Sciences, 2017, 10(4): 1730004
    Download Citation