• Photonics Research
  • Vol. 11, Issue 11, 1880 (2023)
Xinhao Jiang1, Yunyun Ji1,2,*, Fei Fan1,3,4, Songlin Jiang1..., Zhiyu Tan1, Huijun Zhao1, Jierong Cheng1 and Shengjiang Chang1,3,5|Show fewer author(s)
Author Affiliations
  • 1Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • 2Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
  • 3Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
  • 4e-mail: fanfei@nankai.edu.cn
  • 5e-mail: sjchang@nankai.edu.cn
  • show less
    DOI: 10.1364/PRJ.501047 Cite this Article Set citation alerts
    Xinhao Jiang, Yunyun Ji, Fei Fan, Songlin Jiang, Zhiyu Tan, Huijun Zhao, Jierong Cheng, Shengjiang Chang, "Arbitrary terahertz chirality construction and flexible manipulation enabled by anisotropic liquid crystal coupled chiral metasurfaces," Photonics Res. 11, 1880 (2023) Copy Citation Text show less
    References

    [1] V. K. Valev, J. J. Baumberg, C. Sibilia, T. Verbiest. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater., 25, 2517-2534(2013).

    [2] M. Schäferling. Chiral Nanophotonics: Chiral Optical Properties of Plasmonic Systems, 205(2017).

    [3] P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller. Chiral quantum optics. Nature, 541, 473-480(2017).

    [4] B. Ma, A. Bianco. Regulation of biological processes by intrinsically chiral engineered materials. Nat. Rev. Mater., 8, 403-413(2023).

    [5] R. Naaman, Y. Paltiel, D. H. Waldeck. Chiral molecules and the electron spin. Nat. Rev. Chem., 3, 250-260(2019).

    [6] D. W. Green, J.-M. Lee, E.-J. Kim, D.-J. Lee, H.-S. Jung. Chiral biomaterials: from molecular design to regenerative medicine. Adv. Mater. Interfaces, 3, 1500411(2016).

    [7] Y. Luo, C. Chi, M. Jiang, R. Li, S. Zu, Y. Li, Z. Fang. Plasmonic chiral nanostructures: chiroptical effects and applications. Adv. Opt. Mater., 5, 1700040(2017).

    [8] G. D. Fasman. Circular Dichroism and the Conformational Analysis of Biomolecules(1996).

    [9] L. D. Barron. Molecular Light Scattering and Optical Activity(2004).

    [10] M. Seo, H.-R. Park. Terahertz biochemical molecule-specific sensors. Adv. Opt. Mater., 8, 1900662(2020).

    [11] Y. Peng, C. Shi, Y. Zhu, M. Gu, S. Zhuang. Terahertz spectroscopy in biomedical field: a review on signal-to-noise ratio improvement. PhotoniX, 1, 12(2020).

    [12] J.-H. Cheng, R. C. Jones, O. Sushko, Y. Tashiro, R. Donnan. Quasi-optical sub-THz circular dichroism spectroscopy of solvated myoglobin. IEEE Trans. Terahertz Sci. Technol., 10, 348-357(2020).

    [13] W. J. Choi, G. Cheng, Z. Huang, S. Zhang, T. B. Norris, N. A. Kotov. Terahertz circular dichroism spectroscopy of biomaterials enabled by Kirigami polarization modulators. Nat. Mater., 18, 820-826(2019).

    [14] Z. Shen, S. Fan, W. Yin, S. Li, Y. Xu, L. Zhang, X. Chen. Chiral metasurfaces with maximum circular dichroism enabled by out-of-plane plasmonic system. Laser Photon. Rev., 16, 2200370(2022).

    [15] S. Fasold, S. Linß, T. Kawde, M. Falkner, M. Decker, T. Pertsch, I. Staude. Disorder-enabled pure chirality in bilayer plasmonic metasurfaces. ACS Photon., 5, 1773-1778(2018).

    [16] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, M. Wegener. Gold helix photonic metamaterial as broadband circular polarizer. Science, 325, 1513-1515(2009).

    [17] A. Y. Zhu, W. T. Chen, A. Zaidi, Y.-W. Huang, M. Khorasaninejad, V. Sanjeev, C.-W. Qiu, F. Capasso. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light Sci. Appl., 7, 17158(2018).

    [18] X. Ma, M. Pu, X. Li, Y. Guo, P. Gao, X. Luo. Meta-chirality: fundamentals, construction and applications. Nanomaterials, 7, 116(2017).

    [19] Z. Zhang, T. Zhang, F. Fan, Y. Ji, S. Chang. Terahertz polarization sensing of bovine serum albumin proteolysis on curved flexible metasurface. Sens. Actuators A, Phys., 338, 113499(2022).

    [20] C. Chen, S. Gao, W. Song, H. Li, S.-N. Zhu, T. Li. Metasurfaces with planar chiral meta-atoms for spin light manipulation. Nano Lett., 21, 1815-1821(2021).

    [21] T. Kan. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat. Commun., 6, 8422(2015).

    [22] Z. Tan, F. Fan, S. Guan, H. Wang, D. Zhao, Y. Ji, S. Chang. Terahertz spin-conjugate symmetry breaking for nonreciprocal chirality and one-way transmission based on magneto-optical moiré metasurface. Adv. Sci., 10, 2204916(2023).

    [23] T.-T. Kim, S. S. Oh, H.-D. Kim, H. S. Park, O. Hess, B. Min, S. Zhang. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci. Adv., 3, e1701377(2017).

    [24] M. Liu, E. Plum, H. Li, S. Li, Q. Xu, X. Zhang, C. Zhang, C. Zou, B. Jin, J. Han, W. Zhang. Temperature-controlled optical activity and negative refractive index. Adv. Func. Mater., 31, 2010249(2021).

    [25] C. Zheng, J. Li, S. Wang, J. Li, M. Li, H. Zhao, X. Hao, H. Zang, Y. Zhang, J. Yao. Optically tunable all-silicon chiral metasurface in terahertz band. Appl. Phys. Lett., 118, 051101(2021).

    [26] S. Wang, L. Kang, D. H. Werner. Active terahertz chiral metamaterials based on phase transition of vanadium dioxide (VO2). Sci. Rep., 8, 189(2018).

    [27] H. Yu, H. Wang, Q. Wang, S. Ge, W. Hu. Liquid crystal-tuned planar optics in terahertz range. Appl. Sci., 13, 1428(2023).

    [28] X. Fu, L. Shi, J. Yang, Y. Fu, C. Liu, J. W. Wu, F. Yang, L. Bao, T. J. Cui. Flexible terahertz beam manipulations based on liquid-crystal-integrated programmable metasurfaces. ACS Appl. Mater. Interfaces, 14, 22287-22294(2022).

    [29] X. Zhuang, W. Zhang, K. Wang, Y. Gu, Y. An, X. Zhang, J. Gu, D. Luo, J. Han, W. Zhang. Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface. Light Sci. Appl., 12, 14(2023).

    [30] L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, Y.-Q. Lu. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci. Appl., 4, e253(2015).

    [31] L. Cong, N. Xu, W. Zhang, R. Singh. Polarization control in terahertz metasurfaces with the lowest order rotational symmetry. Adv. Opt. Mater., 3, 1176-1183(2015).

    [32] L. Cong, Y. K. Srivastava, R. Singh. Inter and intra-metamolecular interaction enabled broadband high-efficiency polarization control in metasurfaces. Appl. Phys. Lett., 108, 011110(2016).

    [33] L. Cong, Y. K. Srivastava, R. Singh. Near-field inductive coupling induced polarization control in metasurfaces. Adv. Opt. Mater., 4, 848-852(2016).

    [34] S. Xu, F. Fan, H. Cao, Y. Wang, S. Chang. Liquid crystal integrated metamaterial for multi-band terahertz linear polarization conversion. Chin. Opt. Lett., 19, 093701(2021).

    [35] X. Zhang, F. Fan, Y.-Y. Ji, S.-J. Chang. Temperature-dependent chirality of cholesteric liquid crystal for terahertz waves. Opt. Lett., 45, 4988-4991(2020).

    [36] H.-J. Zhao, F. Fan, T.-R. Zhang, Y.-Y. Ji, S.-J. Chang. Dynamic terahertz anisotropy and chirality enhancement in liquid-crystal anisotropic dielectric metasurfaces. Photon. Res., 10, 1097-1106(2022).

    [37] C. Feng, T. He, Y. Shi, Q. Song, J. Zhu, J. Zhang, Z. Wang, D. P. Tsai, X. Cheng. Diatomic metasurface for efficient six-channel modulation of Jones matrix. Laser Photon. Rev., 17, 2200955(2023).

    [38] A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, N. Liu. Reconfigurable 3D plasmonic metamolecules. Nat. Mater., 13, 862-866(2014).

    [39] Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, A. Alù. Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun., 8, 14180(2017).

    [40] K. Lee, B. Kim, L. Raju, S. P. Rodrigues, D. Ko, W. Cai. Enantiomer-selective molecular sensing in the nonlinear optical regime via upconverting chiral metamaterials. Adv. Funct. Mater., 32, 2208641(2022).

    [41] C. Menzel, C. Rockstuhl, F. Lederer. Advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A, 82, 053811(2010).

    [42] Z. Wang, F. Cheng, T. Winsor, Y. Liu. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology, 27, 412001(2016).

    [43] H. G. Berry, G. Gabrielse, A. E. Livingston. Measurement of the Stokes parameters of light. Appl. Opt., 16, 3200-3205(1977).

    Xinhao Jiang, Yunyun Ji, Fei Fan, Songlin Jiang, Zhiyu Tan, Huijun Zhao, Jierong Cheng, Shengjiang Chang, "Arbitrary terahertz chirality construction and flexible manipulation enabled by anisotropic liquid crystal coupled chiral metasurfaces," Photonics Res. 11, 1880 (2023)
    Download Citation