• Chinese Optics Letters
  • Vol. 19, Issue 5, 052703 (2021)
Yajun Wang1、2, Yuhang Tian1, Xiaocong Sun1, Long Tian1、2, and Yaohui Zheng1、2、*
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.3788/COL202119.052703 Cite this Article Set citation alerts
    Yajun Wang, Yuhang Tian, Xiaocong Sun, Long Tian, Yaohui Zheng. Noise transfer of pump field noise with analysis frequency in a broadband parametric downconversion process[J]. Chinese Optics Letters, 2021, 19(5): 052703 Copy Citation Text show less
    References

    [1] N. Takei, H. Yonezawa, T. Aoki, A. Furusawa. High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys. Rev. Lett., 94, 220502(2005).

    [2] L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, U. L. Andersen. Continuous variable quantum key distribution with modulated entangled states. Nat. Commun., 3, 1083(2012).

    [3] N. Wang, S. N. Du, W. Y. Liu, X. Y. Wang, Y. M. Li, K. C. Peng. Long-distance continuous-variable quantum key distribution with entangled states. Phys. Rev. Appl., 10, 064028(2018).

    [4] S. H. Hao, X. W. Deng, Q. Zhang, X. L. Su. Distribution of a modulated squeezed state over a lossy channel. Chin. Opt. Lett., 13, 122701(2015).

    [5] S. H. Hao, X. W. Deng, X. L. Su, X. J. Jia, C. D. Xie, K. C. Peng. Gates for one-way quantum computation based on Einstein–Podolsky–Rosen entanglement. Phys. Rev. A, 89, 032311(2014).

    [6] X. L. Su, S. H. Hao, X. W. Deng, L. Y. Ma, M. H. Wang, X. J. Jia, C. D. Xie, K. C. Peng. Gate sequence for continuous variable one-way quantum computation. Nat. Commun., 4, 2828(2013).

    [7] R. Ukai, S. Yokoyama, J. Yoshikawa, P. V. Loock, A. Furusawa. Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation. Phys. Rev. Lett., 107, 250501(2011).

    [8] M. R. Huo, J. L. Qin, Y. R. Sun, Z. H. Yan, X. J. Jia. Generation of intensity difference squeezed state at a wavelength of 1.34 µm. Chin. Opt. Lett., 16, 110506(2018).

    [9] Z. S. Zhang, S. Mouradian, F. N. C. Wong, J. H. Shapiro. Entanglement-enhanced sensing in a lossy and noisy environment. Phys. Rev. Lett., 114, 110506(2015).

    [10] H. Vahlbruch, M. Mehmet, K. Danzmann, R. Schnabel. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett., 117, 110801(2016).

    [11] X. C. Sun, Y. J. Wang, L. Tian, Y. H. Zheng, K. C. Peng. Detection of 13.8 dB squeezed vacuum states by optimizing the interference efficiency and gain of balanced homodyne detection. Chin. Opt. Lett., 17, 072701(2019).

    [12] W. H. Yang, S. P. Shi, Y. J. Wang, W. G. Ma, Y. H. Zheng, K. C. Peng. Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations. Opt. Lett., 42, 4553(2017).

    [13] H. Y. Zhang, J. R. Wang, Q. H. Li, Y. J. Ji, Z. Y. He, R. C. Yang, L. Tian. Experimental realization of high quality factor resonance detector. Acta Sin. Quantum Opt., 25, 456(2019).

    [14] H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, R. Schnabel. Coherent control of vacuum squeezing in the gravitational-wave detection band. Phys. Rev. Lett., 97, 011101(2006).

    [15] S. Ast, M. Mehmet, R. Schnabel. High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity. Opt. Express, 21, 13572(2013).

    [16] M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, R. Schnabel. Observation of squeezed states with strong photon-number oscillations. Phys. Rev. A, 81, 013814(2010).

    [17] K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, P. K. Lam. Squeezing in the audio gravitational-wave detection band. Phys. Rev. Lett., 93, 161105(2004).

    [18] X. C. Sun, Y. J. Wang, L. Tian, S. P. Shi, Y. H. Zheng, K. C. Peng. Dependence of the squeezing and anti-squeezing factors of bright squeezed light on the seed beam power and pump beam noise. Opt. Lett., 44, 1789(2019).

    [19] X. L. Jin, J. Su, Y. H. Zheng. Balanced homodyne detection with high common mode rejection ratio for squeezed light detection. Acta Sin. Quantum Opt., 22, 108(2016).

    [20] H. J. Zhou, W. H. Yang, Z. X. Li, X. F. Li, Y. H. Zheng. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement. Rev. Sci. Instrum., 85, 013111(2014).

    [21] X. M. Guo, X. Y. Wang, Y. M. Li, K. S. Zhang. Quantum noise limited tunable single-frequency Nd:YLF/LBO laser at 526.5 nm. Appl. Opt., 48, 6475(2009).

    CLP Journals

    [1] Boya Xie, Sheng Feng. Heterodyne detection enhanced by quantum correlation[J]. Chinese Optics Letters, 2021, 19(7): 072701

    [2] Huiqi Yang, Pixian Jin, Jing Su, Xiaodong Xu, Jun Xu, Huadong Lu. Realization of a continuous-wave single-frequency tunable Nd:CYA laser[J]. Chinese Optics Letters, 2022, 20(3): 031403

    Data from CrossRef

    [1] Pixian Jin, Jiao Wei?, Jing Su?, Huadong Lu, Kunchi Peng?. Recent progress in continuously tunable low-noise all-solid-state single-frequency continuous-wave laser based on intracavity locked etalon. Frontiers in Physics, 10, 1029336(2022).

    Yajun Wang, Yuhang Tian, Xiaocong Sun, Long Tian, Yaohui Zheng. Noise transfer of pump field noise with analysis frequency in a broadband parametric downconversion process[J]. Chinese Optics Letters, 2021, 19(5): 052703
    Download Citation