• Infrared and Laser Engineering
  • Vol. 50, Issue 8, 20210456 (2021)
Junyu Qian1、2, Yujie Peng1、*, Yanyan Li1, Wenkai Li1, Renyu Feng1、2, Liya Shen1、3, and Yuxin Leng1、*
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • show less
    DOI: 10.3788/IRLA20210456 Cite this Article
    Junyu Qian, Yujie Peng, Yanyan Li, Wenkai Li, Renyu Feng, Liya Shen, Yuxin Leng. Research progress of mid-infrared ultra-intense and ultrashort laser (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210456 Copy Citation Text show less
    References

    [1] T M Baer, N P Bigelow. 2020 visions (lasers). Nature, 463, 26-32(2010).

    [2] L T Ke, K Feng, W T Wang, et al. Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma. Physical Review Letters, 126, 214801(2021).

    [3] R Kodama, P A Norreys, K Mima, et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature, 412, 798-802(2001).

    [4] J Zhong, Y Li, X Wang, et al. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers. Nature Physics, 6, 984-987(2010).

    [5] T Xu, B Shen, J Xu, et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas, 23, 033109(2016).

    [6] T Popmintchev, M C Chen, D Popmintchev, et al. Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers. Science, 336, 1287-1291(2012).

    [7] J A Armstrong, N Bloembergen, J Ducuing, et al. Interactions between light waves in a nonlinear dielectric. Physical Review, 127, 1918-1939(1962).

    [8] A Dubietis, G Jonusauskas, A Piskarskas. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Optics Communications, 88, 437-440(1992).

    [9] G Fan, T Balciunas, T Kanai, et al. Hollow-core-waveguide compression of multi-millijoule CEP-stable 32 μm pulses. Optica, 3, 1308-1311(2016).

    [10] C H Lu, Y J Tsou, H Y Chen, et al. Generation of intense supercontinuum in condensed media. Optica, 1, 400-406(2014).

    [11] M Ueffing, S Reiger, M Kaumanns, et al. Nonlinear pulse compression in a gas-filled multipass cell. Optics Letters, 43, 2070-2073(2018).

    [12] V Shumakova, P Malevich, S Alisauskas, et al. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk. Nature Communications, 7, 12877(2016).

    [13] Ebrahimzadeh M, Sokina I T. infrared Coherent Sources Applications[M]. [S. l.]: Springer, 2008.

    [14] Y F Dai, Y Y Li, X Zou, et al. High-efficiency broadly tunable Cr: ZnSe single crystal laser pumped by Tm: YLF laser. Laser Physics Letters, 10, 105816(2013).

    [15] I T Sorokina. Cr2+-doped II–VI materials for lasers and nonlinear optics. Optical Materials, 26, 395-412(2004).

    [16] V S Yakovlev, M Ivanov, F Krausz. Enhanced phase-matching for generation of soft X-ray harmonics and attosecond pulses in atomic gases. Optics Express, 15, 15351-15364(2007).

    [17] L Allen, M W Beijersbergen, R J Spreeuw, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45, 8185-8189(1992).

    [18] M S Soskin, M V Vasnetsov. Singular optics. Progress in Optics, 42, 219-276(2001).

    [19] R Inoue, T Yonehara, Y Miyamoto, et al. Measuring qutrit-qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon. Physical Review Letters, 103, 110503(2009).

    [20] A Mair, A Vaziri, G Weihs, et al. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [21] A M Yao, M J Padgett. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 3, 161-204(2011).

    [22] S Bretschneider, C Eggeling, S W Hell. Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Physical Review Letters, 98, 218103(2007).

    [23] Y Yan, G Xie, M P Lavery, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nature Communications, 5, 4876(2014).

    [24] C Hernandez-garcia, A Picon, Roman J San, et al. Attosecond extreme ultraviolet vortices from high-order harmonic generation. Physical Review Letters, 111, 083602(2013).

    [25] L Rego, K M Dorney, N J Brooks, et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science, 364, eaaw9486(2019).

    [26] D Brida, C Manzoni, G Cirmi, et al. Generation of broadband mid-infrared pulses from an optical parametric amplifier. Optics Express, 15, 15035-15040(2007).

    [27] T Steinle, A Stenmann, R Hegenbarth, et al. Watt-level optical parametric amplifier at 42 MHz tunable from 1.35 to 4.5 mum coherently seeded with solitons. Optics Express, 22, 9567-9673(2014).

    [28] M W Haakestad, G Arisholm, E Lippert, et al. High-pulse-energy mid-infrared laser source based on optical parametric amplification in ZnGeP2. Optics Express, 16, 14263-14273(2008).

    [29] E J Takahashi, T Kanai, Y Nabekawa, et al. 10mJ class femtosecond optical parametric amplifier for generating soft x-ray harmonics. Applied Physics Letters, 93, 041111(2008).

    [30] N Thiré, S Beaulieu, V Cardin, et al. 10 mJ 5-cycle pulses at 1.8 μm through optical parametric amplification. Applied Physics Letters, 106, 091110(2015).

    [31] Y Chen, Y Y Li, W K Li, et al. Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier. Optics Communications, 365, 7-13(2016).

    [32] Z Heiner, V Petrov, M Mero. Efficient, sub-4-cycle, 1-microm-pumped optical parametric amplifier at 10 microm based on BaGa4S7. Optics Letters, 45, 5692-5695(2020).

    [33] S Cheng, G Chatterjee, F Tellkamp, et al. Compact Ho: YLF-pumped ZnGeP2-based optical parametric amplifiers tunable in the molecular fingerprint regime. Optics Letters, 45, 2255-2258(2020).

    [34] G Andriukaitis, T Balciunas, S Allisauskas, et al. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier. Optics Letters, 36, 2755-2757(2011).

    [35] A V Mitrofanov, A A Voronin, D A Sidorov-biryukov, et al. Mid-infrared laser filaments in the atmosphere. Scientific Reports, 5, 8368(2015).

    [36] P F Wang, Y Y Li, W K Li, et al. 2.6 mJ/100 Hz CEP-stable near-single-cycle 4 mum laser based on OPCPA and hollow-core fiber compression. Optics Letters, 43, 2197-2200(2018).

    [37] P F Wang, B J Shao, H P Su, et al. High-repetition-rate, high-peak-power 1450 nm laser source based on optical parametric chirped pulse amplification. High Power Laser Science and Engineering, 7, e32(2019).

    [38] J Ma, J Wang, P Yuan, et al. Quasi-parametric amplification of chirped pulses based on a Sm3+-doped yttrium calcium oxyborate crystal. Optica, 2, 1006-1009(2015).

    [39] F Wand, G Xie, P Yuan, et al. Theoretical design of 100-terawatt-level mid-infrared laser. Laser Physics Letters, 12, 075402(2015).

    [40] Q Zhang, E J Takahashi, O D Mucke, et al. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses. Optics Express, 19, 7190-7212(2011).

    [41] Y Fu, K Midorikawa, E J Takahashi. Towards a petawatt-class few-cycle infrared laser system via dual-chirped optical parametric amplification. Scientific Reports, 8, 7692(2018).

    [42] Y Fu, B Xue, K Midorikawa, et al. TW-scale mid-infrared pulses near 3.3 μm directly generated by dual-chirped optical parametric amplification. Applied Physics Letters, 112, 241105(2018).

    [43] B E Schmidt, N Thire, M Boivin, et al. Frequency domain optical parametric amplification. Nature Communications, 5, 3643(2014).

    [44] V Gruson, G Ernotte, P Lassonde, et al. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification. Optics Express, 25, 27706-27014(2017).

    [45] B E Schmidt, P Béjot, M Giguère, et al. Compression of 1.8 μm laser pulses to sub two optical cycles with bulk material. Applied Physics Letters, 96, 121109(2010).

    [46] L Lavenu, M Natile, F Guichard, et al. Nonlinear pulse compression based on a gas-filled multipass cell. Optics Letters, 43, 2252-2255(2018).

    [47] V Shumakova, S Alisauskas, P Malevich, et al. Chirp-controlled filamentation and formation of light bullets in the mid-IR. Optics Letters, 44, 2173-2176(2019).

    [48] A V Mitrofanov, A A Voronin, D A Sidorov-Biryukov, et al. Subterawatt few-cycle mid-infrared pulses from a single filament. Optica, 3, 299-302(2016).

    [49] J Qian, P Wang, Y Peng, et al. Pulse combination and compression in hollow-core fiber for few-cycle intense mid-infrared laser generation. Photonics Research, 9, 477-483(2021).

    [50] B Shao, Y Li, Y Peng, et al. 1.9 μm few-cycle pulses based on multi-thin-plate spectral broadening and nonlinear self-compression. IEEE Photonics Journal, 13, 1-8(2021).

    [51] Grafenstein L Von, M Bock, D Ueberschaer, et al. Multi-millijoule, few-cycle 5 microm OPCPA at 1 kHz repetition rate. Optics Letters, 45, 5998-6001(2020).

    [52] J Pupeikis, P A Chevreuil, N Bigler, et al. Water window soft X-ray source enabled by a 25 W few-cycle 22 µm OPCPA at 100 kHz. Optica, 7, 168-171(2020).

    [53] V Cardin, N Thiré, S Beaulieu, et al. 0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression. Applied Physics Letters, 107, 181101(2015).

    [54] D Gauthier, P R Ribic, G Adhikary, et al. Tunable orbital angular momentum in high-harmonic generation. Nature Communications, 8, 14971(2017).

    [55] K Miyamoto, S Miyagi, M Yamada, et al. Optical vortex pumped mid-infrared optical parametric oscillator. Optics Express, 19, 12220-12226(2011).

    [56] K Yamane, Y Toda, R Morita. Ultrashort optical-vortex pulse generation in few-cycle regime. Optics Express, 20, 18986-18993(2012).

    [57] J Qian, Y Peng, Y Li, et al. Femtosecond mid-IR optical vortex laser based on optical parametric chirped pulse amplification. Photonics Research, 8, 421-425(2020).

    [58] H Zhong, C Liang, S Dai, et al. Polarization-insensitive, high-gain parametric amplification of radially polarized femtosecond pulses. Optica, 8, 62-69(2021).

    Junyu Qian, Yujie Peng, Yanyan Li, Wenkai Li, Renyu Feng, Liya Shen, Yuxin Leng. Research progress of mid-infrared ultra-intense and ultrashort laser (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210456
    Download Citation