• Laser & Optoelectronics Progress
  • Vol. 58, Issue 17, 1700008 (2021)
Shiling Min1, Juan Hou1、*, Kai Zhang1, and Aijun Huang2
Author Affiliations
  • 1Additive Manufacturing Research Institute, School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Monash Center for Additive Manufacturing, Monash University, Notting Hill, VIC 3168, Australia
  • show less
    DOI: 10.3788/LOP202158.1700008 Cite this Article Set citation alerts
    Shiling Min, Juan Hou, Kai Zhang, Aijun Huang. Laser Powder Bed Fusion of GH3536 Alloy[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1700008 Copy Citation Text show less
    Schematic of laser powder bed fusion forming[8]
    Fig. 1. Schematic of laser powder bed fusion forming[8]
    TTT curve of GH3536 alloy drawn by Zhao et al[29]
    Fig. 2. TTT curve of GH3536 alloy drawn by Zhao et al[29]
    Typical metallographic structures of GH3536 alloy prepared by LPBF[32]. (a) Metallographic structure in vertical direction; (b) metallographic structure in horizontal direction
    Fig. 3. Typical metallographic structures of GH3536 alloy prepared by LPBF[32]. (a) Metallographic structure in vertical direction; (b) metallographic structure in horizontal direction
    3D printed molten pool of GH3536 alloy at high magnification[32].(a) In vertical direction; (b) in horizontal direction
    Fig. 4. 3D printed molten pool of GH3536 alloy at high magnification[32].(a) In vertical direction; (b) in horizontal direction
    Microstructures in different directions[33]. (a) In vertical direction; (b) in horizontal direction
    Fig. 5. Microstructures in different directions[33]. (a) In vertical direction; (b) in horizontal direction
    Microstructures in different directions after heat treatment[32]. (a)In vertical direction; (b) in horizontal direction
    Fig. 6. Microstructures in different directions after heat treatment[32]. (a)In vertical direction; (b) in horizontal direction
    Microstructures in different directions after hot isostatic pressing[37]. (a) In vertical direction; (b) in horizontal direction
    Fig. 7. Microstructures in different directions after hot isostatic pressing[37]. (a) In vertical direction; (b) in horizontal direction
    ElementCCrCoWMoAlTiNi
    Mass fraction /%0.05‒0.1520.50‒23.000.50‒2.500.20‒1.008.00‒10.00≤0.50≤0.15Bal.
    ElementFeBMnSiPSCu
    Mass fraction /%17.00‒20.00≤0.010≤1.00≤1.00≤0.025≤0.015≤0.50
    Table 1. Chemical composition of GH3536 alloy
    SpeciesTensile properties at room temperature
    σ0.2 /MPaσb /MPaδs /%
    Cold rolled sheet≥310≥725≥35
    Cold rolled strip≥310≥760≥30
    Cold drawn pipe≥310≥690≥25
    Bar≥275≥690≥30
    Ring≥275≥690≥30
    Precision casting≥200≥380≥10
    Table 2. Mechanical properties of different varieties of GH3536 alloy stipulated in the technical standard[26]
    StateDirectionσ0.2 /MPaσb /MPaδs /%
    As-fabricatedHorizontal630±20780±58±3
    As-fabricatedVertical600±40900±528±4
    LPBF+heat treatmentHorizontal410±10740±522±1
    Vertical415±5790±1038±9
    LPBF+HIPHorizontal480±40760±540±1
    Vertical430±30810±541±10
    Table 3. Room-temperature mechanical properties of GH3536 alloy prepared by LPBF[44]
    StateDirectionYield strength /MPaTensile strength /MPaElongation /%Reduction of area /%
    Hot rolled2122849684
    HIP+HTHorizontal2143125448
    HIP+HTVertical2243335741
    HTHorizontal1863633835
    HTVertical1873733330
    As-fabricatedHorizontal3704711923
    As-fabricatedVertical29935834
    Table 4. High-temperature mechanical properties of GH3536 alloy prepared by LPBF[47]
    SpecimenStress /MPaBreaking time /hSteady creep rate /(%·h-1Elongation /%Shrinkage /%
    Bar12527.20.4635764
    10560.50.1694452
    85219.50.03912638
    Sample 11251670.003645.012
    1057570.001174.711
    8525800.0002683.74.8
    Sample 2125390.02706.710.5
    1051180.007386.07.8
    854560.00158--
    Table 5. Creep properties of GH3536 alloy at high temperature[49]
    Shiling Min, Juan Hou, Kai Zhang, Aijun Huang. Laser Powder Bed Fusion of GH3536 Alloy[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1700008
    Download Citation