• Infrared and Laser Engineering
  • Vol. 53, Issue 5, 20240098 (2024)
Chao Liu1,2,3,4, Rong Wang1,2,3,4, Bin Lan1,2,3, Xueying Li1,2,3..., Kaihe Zhang1,2,3, Tianjun Dai1,2,3 and You Zhang1,2,3,4|Show fewer author(s)
Author Affiliations
  • 1Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
  • 2National Laboratory on Adaptive Optics, Chengdu 610209, China
  • 3Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/IRLA20240098 Cite this Article
    Chao Liu, Rong Wang, Bin Lan, Xueying Li, Kaihe Zhang, Tianjun Dai, You Zhang. Research progress and prospects of suppressing atmospheric turbulence with optical pin beams (cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(5): 20240098 Copy Citation Text show less
    References

    [1] D Zhu, C Li, X Sun, et al. The effect of air turbulence on vortex beams in nonlinear propagation. Sensors, 23, 1-13(2023).

    [2] F Roddier, M Northcott, J E Graves. A simple low-order adaptives optics system for near-infrared applications. Publ Astron Soc Pac, 103, 131-149(1991).

    [3] H Zhang, L Xu, Y F Guo, et al. Application of AdamSPGD algorithm to sensor-less adaptive optics in coherent free-space optical communication system. Optics Express, 30, 7477-7490(2022).

    [4] L Jiang, Z Dai, X Yu, et al. Experimental demonstration of a single-mode fiber coupling over a 1 km urban path with adaptive optics. Journal of Russian Laser Research, 42, 363-370(2021).

    [5] S Kumar, D Sharma, A Payal. Performance enhancement of multi channel multi beam FSO communication link with the application of reed solomon codes. Opt Quantum Electron, 54, 1-11(2022).

    [6] K Shi, B C Thomsen. Sparse adaptive frequency domain equalizers for mode-group division multiplexing. Journal of Lightwave Technology, 33, 311-317(2015).

    [7] A E Willner, Y Ren, G Xie, et al. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing. Philos Trans A Math Phys Eng Sci, 375, 1-18(2017).

    [8] M Mazilu, D J Stevenson, F Gunnmoore, et al. Light beats the spread: "non‐diffracting" beams. Laser & Photonics Reviews, 4, 529-547(2010).

    [9] X C Chu, R J Liu, X Wang, et al. Influence of optical airy transform on non-diffracting propagation distance of finite energy airy beams. Opt Appl, 51, 473-482(2021).

    [10] Z Zhang, X Liang, M Goutsoulas, et al. Robust propagation of pin-like optical beam through atmospheric turbulence. APL Photonics, 4, 076103(2019).

    [11] D Li, D Bongiovanni, M Goutsoulas, et al. Direct comparison of anti-diffracting optical pin beams and abruptly autofocusing beams. OSA Continuum, 3, 1525-1535(2020).

    [12] X J Wang, H X Wang, M Li, . Impact of receiving aperture on BER performance of optical wireless communication systems. Study on Optical Communications, 33, 64-66(2012).

    [13] C Chen, H Yang, H Jiang, . Performance analysis of large-aperture receiving and selection of aperture size in atmospheric optical communications. Chinese Journal of Lasers, 36, 2958-2961(2009).

    [14] N Hu, H Zhou, R Zhang, et al. Experimental demonstration of a “pin-like” low-divergence beam in a 1-Gbit/s OOK FSO link using a limited-size receiver aperture at various propagation distances. Optics Letters, 47, 4215-4218(2022).

    [15] A E Willner, K Pang, H Song, et al. Orbital angular momentum of light for communications. Applied Physics Reviews, 8, 041312(2021).

    [16] R F Zhang, W R Zhang, X J Zhang, . Research status and development trend of high earth orbit satellite laser relay links. Laser & Optoelectronics Progress, 58, 13-13(2021).

    [17] Bongiovanni D, Li D H, Goutsoulas M, et al. Generation of vtex optical pinlike beams [C]IEEE Photonics Conference (IPC), 2020.

    [18] Li D H, Bongiovanni D, Goutsoulas M, et al. Pinlike optical vtex beams [C]Conference on Lasers ElectroOptics (CLEO), 2020: 12.

    [19] J Cao, L Han, H Liang, et al. Orbital angular momentum spectrum of pin-like optical vortex beams in turbulent atmosphere. J Opt Soc Am A, 39, 1414-1419(2022).

    [20] Yue X, Bin L, Chao L, et al. Selffocusing pinlike optical vtex beams resist atmospheric turbulence propagation f the space optical communication [C]Proc of SPIE, 2023, 127572: 127572T.

    [21] X Kang, X Yang, J Ma, et al. Steady optical beam propagating through turbulent environment. Opt Express, 30, 10063-10070(2022).

    [22] Y Yang, X Kang, L Cao. Robust propagation of a steady optical beam through turbulence with extended depth of focus based on spatial light modulator. Journal of Physics: Photonics, 5, 035002(2023).

    [23] X Zhong, X Kang, Y Liu, et al. Optimization design of steady optical pin beam using genetic algorithm. Optics and Lasers in Engineering, 168, 107680(2023).

    [24] L Wang, Z Guo, S Wang, . Applications of non-diffracting beams in biological microscopic imaging. Laser & Optoelectronics Progress, 60, 2000001(2023).

    [25] S Lin, Y Cai, J Yu. Research progress of propagation of beams with special correlation structure in turbulent atmosphere. High Power Laser and Particle Beams, 33, 081006(2021).

    Chao Liu, Rong Wang, Bin Lan, Xueying Li, Kaihe Zhang, Tianjun Dai, You Zhang. Research progress and prospects of suppressing atmospheric turbulence with optical pin beams (cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(5): 20240098
    Download Citation