• Opto-Electronic Engineering
  • Vol. 48, Issue 11, 210199 (2021)
Ni Kaijia, Zhang Haijun*, You Qingyang, and Zhang Ziyao
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2021.210199 Cite this Article
    Ni Kaijia, Zhang Haijun, You Qingyang, Zhang Ziyao. Research on optothermal microactuation method and technology in liquid[J]. Opto-Electronic Engineering, 2021, 48(11): 210199 Copy Citation Text show less
    References

    [1] Conrad H, Schenk H, Kaiser B, et al. A small-gap electrostatic micro-actuator for large deflections[J]. Nat Commun, 2015, 6(1): 10078.

    [2] Li H J, Barnes P, Harding E, et al. Large-displacement vertical electrostatic microactuator dynamics using duty-cycled softening/stiffening parametric resonance[J]. J Microelectromech Syst, 2019, 28(3): 351–361.

    [3] Liu J K, Liu Y X, Zhao L L, et al. Design and experiments of a single-foot linear piezoelectric actuator operated in a stepping mode[J]. IEEE Trans Industr Electron, 2018, 65(10): 8063–8071.

    [4] Shokrgozar A, Safarpour H, Habibi M. Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator[J]. Proc Instit Mech Eng Part C: J Mech Eng Sci, 2020, 234(2): 512–529.

    [5] Duvernoy B, Farkhatdinov I, Topp S, et al. Electromagnetic actuator for tactile communication[M]//Prattichizzo D, Shinoda H, Tan H Z, et al. Haptics: Science, Technology, and Applications. Cham: Springer, 2018.

    [6] Salerno M, Firouzeh A, Paik J, et al. A low profile electromagnetic actuator design and model for an origami parallel platform[J]. J Mech Robot, 2017, 9(4): 041005.

    [7] Yu Y W, Zhang C, Zhou M L. NARMAX model-based hysteresis modeling of magnetic shape memory alloy actuators[J]. IEEE Trans Nanotechnol, 2019, 19: 1–4.

    [8] Zhang C, Yu Y W, Wang Y F, et al. Takagi–sugeno fuzzy neural network hysteresis modeling for magnetic shape memory alloy actuator based on modified bacteria foraging algorithm[J]. Int J Fuzzy Syst, 2020, 22(4): 1314–1329.

    [9] Evstafyev S, Samoylikov V. Research and analysis of heat exchange processes of a micromechanical mirror based on a thermal microactuator[J]. Proc SPIE, 2019, 11022: 110220U.

    [10] Lin X T, Han Q, Huang J Z. Effect of defects on the motion of carbon nanotube thermal actuator[J]. Nanotechnol Rev, 2019, 8(1): 79–89.

    [11] Kim T H, Choi J G, Byun J Y, et al. Biomimetic thermal-sensitive multi-transform actuator[J]. Sci. Rep., 2019, 9(1): 7905.

    [12] Kim S, Zhang X, Daugherty R, et al. Ultrasonic electrostatic actuators on a flexible substrate[J]. Proceedings of the IEEE 25th International Conference on Micro Electro Mechanical Systems, Paris, France, 2015: 1193–1196.

    [13] Geetha G K, Mahapatra D R. Modeling and simulation of vibro-thermography including nonlinear contact dynamics of ultrasonic actuator[J]. Ultrasonics, 2019, 93: 81–92.

    [14] Cao Y, Dong J Y. High-performance low-voltage soft electrothermal actuator with directly printed micro-heater[J]. Sens Actuat A: Phys, 2019, 297: 111546.

    [15] Cao Y, Dong J Y. Fabrication and self-sensing control of soft electrothermal actuator[J]. Proced Manuf, 2020, 48: 43–48.

    [16] Liu C, Zhang D X, Zhang H J. Experimental study of the characteristics of novel microactuator based on optothermal expansion[J]. High Technol Lett, 2009, 15(2): 131–134.

    [17] Mark J E. Polymer data handbook, 2nd ed[J]. J Am Chem Soc, 2009, 131(44): 16330–16330.

    [18] Pope R M, Fry E S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements[J]. Appl Opt, 1997, 36(33): 8710–8723.

    Ni Kaijia, Zhang Haijun, You Qingyang, Zhang Ziyao. Research on optothermal microactuation method and technology in liquid[J]. Opto-Electronic Engineering, 2021, 48(11): 210199
    Download Citation