• Laser & Optoelectronics Progress
  • Vol. 59, Issue 5, 0516002 (2022)
Wentao Zhang1, Weijie Shi2, Hui Guo2, and Changchun Yan2、*
Author Affiliations
  • 1School of Physics and New Energy, Xuzhou Institute of Technology, Xuzhou , Jiangsu 221018, China
  • 2Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou , Jiangsu 221116, China
  • show less
    DOI: 10.3788/LOP202259.0516002 Cite this Article Set citation alerts
    Wentao Zhang, Weijie Shi, Hui Guo, Changchun Yan. Broadband Circular Dichroism of Rotating Helical-Typed Mid-Infrared Chiral Metamaterials[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0516002 Copy Citation Text show less
    References

    [1] Yuan Y, Chai X L, Yang C A et al. 2.75-μm mid-infrared GaSb-based quantum well lasers with quinary alloy barrier[J]. Chinese Journal of Lasers, 47, 0701026(2020).

    [2] Nie H K, Ning J, Zhang B T et al. Recent progress of optical-superlattice-based mid-infrared optical parametric oscillators[J]. Chinese Journal of Lasers, 48, 0501008(2021).

    [3] Wang Q, Qi L, Wang R Y et al. Research progress of mid infrared laser via intra-pulse difference frequency generation of femtosecond laser[J]. Laser & Optoelectronics Progress, 58, 1700001(2021).

    [4] Höflich K, Feichtner T, Hansjürgen E et al. Resonant behavior of a single plasmonic helix[J]. Optica, 6, 1098-1105(2019).

    [5] He C, Sun T, Guo J J et al. Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region[J]. Advanced Optical Materials, 7, 1901129(2019).

    [6] Khorashad L K, Besteiro L V, Correa-Duarte M A et al. Hot electrons generated in chiral plasmonic nanocrystals as a mechanism for surface photochemistry and chiral growth[J]. Journal of the American Chemical Society, 142, 4193-4205(2020).

    [7] Droulias S, Bougas L. Surface plasmon platform for angle-resolved chiral sensing[J]. ACS Photonics, 6, 1485-1492(2019).

    [8] Kaschke J, Blome M, Burger S et al. Tapered N-helical metamaterials with three-fold rotational symmetry as improved circular polarizers[J]. Optics Express, 22, 19936-19946(2014).

    [9] Tanaka K, Arslan D, Fasold S et al. Chiral bilayer all-dielectric metasurfaces[J]. ACS Nano, 14, 15926-15935(2020).

    [10] Rogacheva A V, Fedotov V A, Schwanecke A S et al. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure[J]. Physical Review Letters, 97, 177401(2006).

    [11] Zhang S, Park Y S, Li J et al. Negative refractive index in chiral metamaterials[J]. Physical Review Letters, 102, 023901(2009).

    [12] Fang Y R, Verre R, Shao L et al. Hot electron generation and cathodoluminescence nanoscopy of chiral split ring resonators[J]. Nano Letters, 16, 5183-5190(2016).

    [13] Fu T, Qu Y, Wang T K et al. Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition[J]. The Journal of Physical Chemistry C, 121, 1299-1304(2017).

    [14] He Y Z, Lawrence K, Ingram W et al. Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device[J]. ACS Photonics, 2, 1246-1252(2015).

    [15] Kolkowski R, Petti L, Rippa M et al. Octupolar plasmonic meta-molecules for nonlinear chiral watermarking at subwavelength scale[J]. ACS Photonics, 2, 899-906(2015).

    [16] Bochenkov V E, Sutherland D S. Chiral plasmonic nanocrescents: large-area fabrication and optical properties[J]. Optics Express, 26, 27101-271088(2018).

    [17] Han C R, Yang L C, Ye P et al. Three dimensional chiral plasmon rulers based on silver nanorod trimers[J]. Optics Express, 26, 10315-10325(2018).

    [18] Goerlitzer E S A, Mohammadi R, Nechayev S et al. Large-area 3D plasmonic crescents with tunable chirality[J]. Advanced Optical Materials, 7, 1801770(2019).

    [19] Gansel J K, Thiel M, Rill M S et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 325, 1513-1515(2009).

    [20] Schnell M, Sarriugarte P, Neuman T et al. Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces[J]. Nano Letters, 16, 663-670(2016).

    [21] Zhang S J, Li Y, Liu Z P et al. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum[J]. Applied Physics Letters, 105, 061101(2014).

    [22] Zhu Y L, Cao B W, Li J W et al. L-shaped ITO structures fabricated by oblique angle deposition technique for mid-infrared circular dichroism[J]. Optics Express, 27, 33243-33250(2019).

    [23] Kwon D H, Werner P L, Werner D H. Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation[J]. Optics Express, 16, 11802-11807(2008).

    [24] Wu S, Qu P P, Liu J Q et al. Giant circular dichroism and its reversal in solid and inverse plasmonic gammadion-shaped structures[J]. Optics Express, 24, 27763-27770(2016).

    [25] Fasold S, Linß S, Kawde T et al. Disorder-enabled pure chirality in bilayer plasmonic metasurfaces[J]. ACS Photonics, 5, 1773-1778(2018).

    [26] Qu Y, Huang L S, Wang L et al. Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure[J]. Optics Express, 25, 5480-5487(2017).

    [27] Wang Y E, Qi J W, Pan C P et al. Giant circular dichroism of large-area extrinsic chiral metal nanocrecents[J]. Scientific Reports, 8, 3351(2018).

    [28] Zhao Y, Belkin M A, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers[J]. Nature Communications, 3, 870(2012).

    [29] Ji R N, Wang S W, Liu X X et al. Broadband circular polarizers constructed using helix-like chiral metamaterials[J]. Nanoscale, 8, 14725-14729(2016).

    [30] Guo J C, Kim J Y, Yang S S et al. Broadband circular polarizers via coupling in 3D plasmonic meta-atom arrays[J]. ACS Photonics, 8, 1286-1292(2021).

    [31] Naik G V, Shalaev V M, Boltasseva A. Alternative plasmonic materials: beyond gold and silver[J]. Advanced Materials, 25, 3264-3294(2013).

    [32] Gansel J K, Latzel M, Frölich A et al. Tapered gold-helix metamaterials as improved circular polarizers[J]. Applied Physics Letters, 100, 101109(2012).

    [33] Kaschke J, Wegener M. Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography[J]. Optics Letters, 40, 3986-3989(2015).

    [34] Palik E D[M]. Handbook of optical constants of solids(1997).

    [35] Kraus J D, Marhefka R J[M]. Antenas: for all applications(2001).

    [36] Yu Y, Yang Z Y, Li S X et al. Higher extinction ratio circular polarizers with hetero-structured double-helical metamaterials[J]. Optics Express, 19, 10886-10894(2011).

    Wentao Zhang, Weijie Shi, Hui Guo, Changchun Yan. Broadband Circular Dichroism of Rotating Helical-Typed Mid-Infrared Chiral Metamaterials[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0516002
    Download Citation