• Matter and Radiation at Extremes
  • Vol. 4, Issue 1, 014401 (2019)
Xing-Long Zhu1,2, Min Chen1,2, Tong-Pu Yu3, Su-Ming Weng1,2..., Feng He1,2 and Zheng-Ming Sheng1,2,4,5,a)|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3Department of Physics, National University of Defense Technology, Changsha 410073, China
  • 4SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
  • 5Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.1063/1.5083914 Cite this Article
    Xing-Long Zhu, Min Chen, Tong-Pu Yu, Su-Ming Weng, Feng He, Zheng-Ming Sheng. Collimated GeV attosecond electron–positron bunches from a plasma channel driven by 10 PW lasers[J]. Matter and Radiation at Extremes, 2019, 4(1): 014401 Copy Citation Text show less
    References

    [1] C. D.Anderson, “The positive electron,” Phys. Rev.43, 491 (1933).

    [2] R.Ruffini, G.Vereshchagin, and S.-S.Xue, “Electron–positron pairs in physics and astrophysics: From heavy nuclei to black holes,” Phys. Rep.487, 1 (2010).

    [3] J. R.Danielson, D. H. E.Dubin, R. G.Greaves, and C. M.Surko, “Plasma and trap-based techniques for science with positrons,” Rev. Mod. Phys.87, 247 (2015).

    [4] H.Chenet al., “Scaling the yield of laser-driven electron-positron jets to laboratory astrophysical applications,” Phys. Rev. Lett.114, 215001 (2015).

    [5] E.Lianget al., “High e+/e− ratio dense pair creation with 1021W.cm−2 laser irradiating solid targets,” Sci. Rep.5, 13968 (2015).

    [6] T.Xuet al., “Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons,” Phys. Plasmas23, 033109 (2016).

    [7] J.Warwicket al., “Experimental observation of a current-driven instability in a neutral electron-positron beam,” Phys. Rev. Lett.119, 185002 (2017).

    [8] G.Weidenspointneret al., “An asymmetric distribution of positrons in the Galactic disk revealed by γ-rays,” Nature451, 159 (2008).

    [9] O.Adrianiet al., “An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV,” Nature458, 607 (2009).

    [10] Extreme Light Infrastructure (ELI) European Project, .

    [11] Exawatt Center for Extreme Light Studies (XCELS), .

    [12] D. N.Papadopouloset al., “The Apollon 10 PW laser: Experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng.4, e34 (2016).

    [13] L.Yuet al., “High-contrast front end based on cascaded XPWG and femtosecond OPA for 10-PW-level Ti:sapphire laser,” Opt. Express26, 2625 (2018).

    [14] A.Di Piazza, C.Müller, K. Z.Hatsagortsyan, and C. H.Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys.84, 1177 (2012).

    [15] S.Bulanov, T. Z.Esirkepov, M.Kando, J.Koga, K.Kondo, and G.Korn, “On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers,” Plasma Phys. Rep.41, 1 (2015).

    [16] I. C. E.Turcuet al., “High field physics and QED experiments at ELI-NP,” Rom. Rep. Phys.68, S145 (2016), .

    [17] S.Galeset al., “The extreme light infrastructure-nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams,” Rep. Prog. Phys.81, 094301 (2018).

    [18] G.Breit and J. A.Wheeler, “Collision of two light quanta,” Phys. Rev.46, 1087 (1934).

    [19] X.-L.Zhu, T.-P.Yu, Z.-M.Sheng, Y.Yin, I. C. E.Turcu, and A.Pukhov, “Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas,” Nat. Commun.7, 13686 (2016).

    [20] Y. J.Gu, O.Klimo, S.Weber, and G.Korn, “High density ultrashort relativistic positron beam generation by laser-plasma interaction,” New J. Phys.18, 113023 (2016).

    [21] T.Grismayer, M.Vranic, J. L.Martins, R. A.Fonseca, and L. O.Silva, “Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses,” Phys. Plasmas23, 056706 (2016).

    [22] H.-Z.Li, T.-P.Yu, J.-J.Liu, Y.Yin, X.-L.Zhu, R.Capdessus, F.Pegoraro, Z.-M.Sheng, P.McKenna, and F.-Q.Shao, “Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep.7, 17312 (2017).

    [23] D. D.Sorboet al., “Efficient ion acceleration and dense electron–positron plasma creation in ultra-high intensity laser-solid interactions,” New J. Phys.20, 033014 (2018).

    [24] X.-L.Zhu, T.-P.Yu, M.Chen, S.-M.Weng, and Z.-M.Sheng, “Generation of GeV positron and γ-photon beams with controllable angular momentum by intense lasers,” New J. Phys.20, 083013 (2018).

    [25] J. Y.Yu, T.Yuan, W. Y.Liu, M.Chen, W.Luo, S. M.Weng, and Z. M.Sheng, “QED effects induced harmonics generation in extreme intense laser foil interaction,” Plasma Phys. Controlled Fusion60, 044011 (2018).

    [26] M.Lobet, X.Davoine, E.d’Humières, and L.Gremillet, “Generation of high-energy electron-positron pairs in the collision of a laser-accelerated electron beam with a multipetawatt laser,” Phys. Rev. Accel. Beams20, 043401 (2017).

    [27] T. G.Blackburn, A.Ilderton, C. D.Murphy, and M.Marklund, “Scaling laws for positron production in laser-electron-beam collisions,” Phys. Rev. A96, 022128 (2017).

    [28] M.Vranic, O.Klimo, G.Korn, and S.Weber, “Multi-GeV electron-positron beam generation from laser-electron scattering,” Sci. Rep.8, 4702 (2018).

    [29] F.Krausz and M.Ivanov, “Attosecond physics,” Rev. Mod. Phys.81, 163 (2009).

    [30] F. Y.Li, Z. M.Sheng, Y.Liu, J.Meyer-ter-Vehn, W. B.Mori, W.Lu, and J.Zhang, “Dense attosecond electron sheets from laser wakefields using an up-ramp density transition,” Phys. Rev. Lett.110, 135002 (2013).

    [31] J.-X.Li, K. Z.Hatsagortsyan, B. J.Galow, and C. H.Keitel, “Attosecond gamma-ray pulses via nonlinear Compton scattering in the radiation-dominated regime,” Phys. Rev. Lett.115, 204801 (2015).

    [32] X.-L.Zhu, M.Chen, T.-P.Yu, S.-M.Weng, L.-X.Hu, P.McKenna, and Z.-M.Sheng, “Bright attosecond γ-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets,” Appl. Phys. Lett.112, 174102 (2018).

    [33] C.Bulaet al., “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett.76, 3116 (1996).

    [34] T. D.Arberet al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion57, 113001 (2015).

    [35] R.Duclous, J. G.Kirk, and A. R.Bell, “Monte Carlo calculations of pair production in high-intensity laser–plasma interactions,” Plasma Phys. Controlled Fusion53, 015009 (2011).

    [36] C. P.Ridgers, J. G.Kirk, R.Duclous, T. G.Blackburn, C. S.Brady, K.Bennett, T. D.Arber, and A. R.Bell, “Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions,” J. Comput. Phys.260, 273 (2014).

    [37] V.Yanovskyet al., “Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate,” Opt. Express16, 2109 (2008).

    [38] X.-L.Zhu, Y.Yin, T.-P.Yu, F.-Q.Shao, Z.-Y.Ge, W.-Q.Wang, and J.-J.Liu, “Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone,” New J. Phys.17, 053039 (2015).

    [39] X.-L.Zhu, Y.Yin, T.-P.Yu, J.-J.Liu, D.-B.Zou, Z.-Y.Ge, W.-Q.Wang, and F.-Q.Shao, “Ultra-bright, high-energy-density γ-ray emission from a gas-filled gold cone-capillary,” Phys. Plasmas22, 093109 (2015).

    [40] R.Davidsonet al., Frontiers in High Energy Density Physics: The X-Games of Contemporary Science (National Academies Press, 2003).

    [41] A. R.Bell and J. G.Kirk, “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett.101, 200403 (2008).

    [42] S.Cipicciaet al., “Gamma-rays from harmonically resonant betatron oscillations in a plasma wake,” Nat. Phys.7, 867 (2011).

    [43] K. T.Phuoc, S.Corde, C.Thaury, V.Malka, A.Tafzi, J. P.Goddet, R. C.Shah, S.Sebban, and A.Rousse, “All-optical Compton gamma-ray source,” Nat. Photon.6, 308 (2012).

    [44] G.Sarriet al., “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett.113, 224801 (2014).

    [45] C.Yuet al., “Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering,” Sci. Rep.6, 29518 (2016).

    [46] A.Benedetti, M.Tamburini, and C. H.Keitel, “Giant collimated gamma-ray flashes,” Nat. Photon.12, 319 (2018).

    [47] J. Q.Yu, R. H.Hu, Z.Gong, A.Ting, Z.Najmudin, D.Wu, H. Y.Lu, W. J.Ma, and X. Q.Yan, “The generation of collimated γ-ray pulse from the interaction between 10 PW laser and a narrow tube target,” Appl. Phys. Lett.112, 204103 (2018).

    [48] C.Liuet al., “Ultra-bright, well-collimated, GeV gamma-ray production in the QED regime,” Phys. Plasmas25, 023107 (2018).

    [49] M. J.Hoganet al., “Ultrarelativistic-positron-beam transport through meter-scale plasmas,” Phys. Rev. Lett.90, 205002 (2003).

    [50] M.Schollmeieret al., “Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices,” Phys. Rev. Lett.101, 055004 (2008).

    Xing-Long Zhu, Min Chen, Tong-Pu Yu, Su-Ming Weng, Feng He, Zheng-Ming Sheng. Collimated GeV attosecond electron–positron bunches from a plasma channel driven by 10 PW lasers[J]. Matter and Radiation at Extremes, 2019, 4(1): 014401
    Download Citation