• Journal of Inorganic Materials
  • Vol. 36, Issue 4, 386 (2021)
Shasha LÜ1, Yufei ZU2, Guoqing CHEN1、*, Bojun ZHAO1, Xuesong FU1, and Wenlong ZHOU1
Author Affiliations
  • 11. Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, China
  • 22. Key Laboratory of Advanced Technology for Aerospace Vehicles (Liaoning Province), School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116085, China
  • show less
    DOI: 10.15541/jim20200479 Cite this Article
    Shasha LÜ, Yufei ZU, Guoqing CHEN, Bojun ZHAO, Xuesong FU, Wenlong ZHOU. Preparation and Mechanical Property of the Ceramic-reinforced Cr0.5MoNbWTi Refractory High-entropy Alloy Matrix Composites[J]. Journal of Inorganic Materials, 2021, 36(4): 386 Copy Citation Text show less
    References

    [1] W YEH J, K CHEN S, J LIN S et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6, 299-303(2004).

    [2] N SENKOV O, G B WILKS, M SCOTT J et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 19, 698-706(2011).

    [4] N SENKOV O, V SENKOVA S, B MIRACLE D et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system. Materials Science and Engineering: A, 565, 51-62(2013).

    [5] N SENKOV O, V SENKOVA S, C WOODWARD. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Materialia, 68, 214-228(2014).

    [6] N SENKOV O, C WOODWARD, B MIRACLE D. Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM, 66, 2030-2042(2014).

    [7] N SENKOV O, S GORSSE, B MIRACLE D. High temperature strength of refractory complex concentrated alloys. Acta Materialia, 175, 394-405(2019).

    [10] A MUNIR Z, U ANSELMI-TAMBURINI, M OHYANAGI. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. Journal of Materials Science, 41, 763-777(2006).

    [11] R YAVARI A, J DESRE P, T BENAMEUR. Mechanically driven alloying of immiscible elements. Physical Review Letters, 68, 2235-2238(1992).

    [13] A TAKEUCHI, A INOUE. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions, 46, 2817-2829(2005).

    [15] D HAN Z, N CHEN, F ZHAO S et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics, 84, 153-157(2017).

    [16] C JUAN C, H TSAI M, W TSAI C et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics, 62, 76-83(2015).

    [17] N GUO N, L WANG, S LUO L et al. Effect of composing element on microstructure and mechanical properties in Mo-Nb-Hf-Zr-Ti multi-principle component alloys. Intermetallics, 69, 13-20(2016).

    [18] D STEPANOV N, G SHAYSULTANOV D, A SALISHCHEV G et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Materials Letters, 142, 153-155(2015).

    [19] W GUO, B LIU, Y LIU et al. Microstructures and mechanical properties of ductile NbTaTiV refractory high entropy alloy prepared by powder metallurgy. Journal of Alloys and Compounds, 776, 428-436(2018).

    [20] N SENKOV O, F WOODWARD C. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Materials Science and Engineering: A, 529, 311-320(2011).

    [21] A WASEEM O, J LEE, M LEE H et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials. Materials Chemistry and Physics, 210, 87-94(2018).

    [22] J PAN, T DAI, T LU et al. Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering. Materials Science and Engineering: A, 738, 362-366(2018).

    [23] Q LIU, G WANG, X SUI et al. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering. Journal of Materials Science & Technology, 35, 2600-2607(2019).

    [24] B KANG, T KONG, A RAZA et al. Fabrication, microstructure and mechanical property of a novel Nb-rich refractory high-entropy alloy strengthened by in-situ formation of dispersoids. International Journal of Refractory Metals and Hard Materials, 81, 15-20(2019).

    [25] S LÜ, Y ZU, G CHEN et al. An ultra-high strength CrMoNbWTi-C high entropy alloy co-strengthened by dispersed refractory IM and UHTC phases. Journal of Alloys and Compounds, 788, 1256-1264(2019).

    [26] Y LONG, X LIANG, K SU et al. A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: microstructural evolution and mechanical properties. Journal of Alloys and Compounds, 780, 607-617(2019).

    [27] J CHEN X, V STRUZHKIN V, Z WU et al. Hard superconducting nitrides. Proceedings of the National Academy of Sciences of the United States of America, 102, 3198-3201(2005).

    [28] S WAHSH M M, M KHATTAB R, F ZAWEAH M. Sintering and technological properties of alumina/zirconia/nano-TiO2 ceramic composites. Materials Research Bulletin, 48, 1411-1414(2013).

    [29] P COUZINIÉ J, N SENKOV O, B MIRACLE D et al. Comprehensive data compilation on the mechanical properties of refractory high-entropy alloys. Data in Brief, 21, 1622-1641(2018).

    [30] H CHEN, A KAUFFMANN, B GORR et al. Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al. Journal of Alloys and Compounds, 661, 206-215(2016).

    Shasha LÜ, Yufei ZU, Guoqing CHEN, Bojun ZHAO, Xuesong FU, Wenlong ZHOU. Preparation and Mechanical Property of the Ceramic-reinforced Cr0.5MoNbWTi Refractory High-entropy Alloy Matrix Composites[J]. Journal of Inorganic Materials, 2021, 36(4): 386
    Download Citation