• Opto-Electronic Engineering
  • Vol. 44, Issue 6, 621 (2017)
Rongbo Wang*, Weijun Zhou, Jianhua Meng, Jianhua Tian, and Lihua He
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.06.008 Cite this Article
    Rongbo Wang, Weijun Zhou, Jianhua Meng, Jianhua Tian, Lihua He. A high-speed, eight-wavelength visible light-infrared pyrometer[J]. Opto-Electronic Engineering, 2017, 44(6): 621 Copy Citation Text show less
    References

    [1] Tan Hua. Introduction to experimental shock-wave physics[M]. Beijing: National Defense Industry Press, 2007: 67–77.

    [2] Wang Guichao, Yu Quanyou, Tan Xianxiang, et al. Six channel instantaneous optical pyrometer[J]. Opto-Electronic Engi-neering, 1996, 23(S1): 46-49.

    [3] McGrane S D, Barber J, Quenneville J. Anharmonic vibrational properties of explosives from temperature-dependent Ra-man[J]. The Journal of Physical Chemistry A, 2005, 109(44): 9919- 9927.

    [4] Yuan V W, Bowman J D, Funk D J, et al. Shock temperature measurement using neutron resonance spectroscopy[J]. Physical Review Letters, 2005, 94(12): 125504.

    [5] La Lone B M, Stevens G D, Turley W D, et al. Release path temperatures of shock-compressed tin from dynamic reflec-tance and radiance measurements[J]. Journal of Applied Physics, 2013, 114(6): 063506.

    [6] Boboridis K, Seifter A, Obst A W, et al. Radiance temperatures and normal spectral emittances (in the wavelength range of 1500 to 5000 nm) of Tin, Zinc, aluminum, and silver at their melting points by a pulse-heating technique[J]. International Journal of Thermophysics, 2004, 25(4): 1187-1202.

    [7] Xu Baochang, Zhang Dingyuan. An improved colorimetric temperature measurement method[J]. Opto-Electronic Engi-neering, 2011, 38(4): 1–6.

    [8] Wang Rongbo, Zhu Jun, Zhou Weijun, et al. Temperature measurement of Ta, Al and Cu target stricken by strong elec-tron beam[J]. High Power Laser and Particle Beams, 2014, 26(2): 024001.

    [9] Ni P A, Kulish M I, Mintsev V, et al. Temperature measurement of warm-dense-matter generated by intense heavy-ion beams[J]. Laser and Particle Beams, 2008, 26(4): 583–589.

    [10] Ni P, Hoffmann D H H, Kulish M, et al. Pyrometric system for temperature measurements of HED matter generated by in-tense heavy ion beams[J]. Journal de Physique IV, 2006, 133(1): 977–980.

    [11] Partouche-Sebban D, Pélissier J L, Abeyta F G, et al. Meas-urement of the shock-heated melt curve of lead using pyrom-etry and reflectometry[J]. Journal of Applied Physics, 2005, 97(4): 043521.

    [12] Bordzilovskii S A, Karakhanov S M, Bordzilovskii D S. Using an optical pyrometer for temperature measurements of shock-compressed polytetrafluoroethylene[J]. Combustion, Explosion, and Shock Waves, 2010, 46(1): 81–88.

    [13] Wang Rongbo, Li Zeren. The influence of filter on channel linearity of instantaneous optical pyrometer[J]. Chinese Journal of High Pressure Physics, 2009, 23(2): 150-154.

    Rongbo Wang, Weijun Zhou, Jianhua Meng, Jianhua Tian, Lihua He. A high-speed, eight-wavelength visible light-infrared pyrometer[J]. Opto-Electronic Engineering, 2017, 44(6): 621
    Download Citation