• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 2, 251 (2022)
Xu OUYANG1、*, Mingsi ZHANG1, Qingshuai YANG1, Yaoyu CAO1, Yi XU2, and Xiangping LI1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2022.02.005 Cite this Article
    OUYANG Xu, ZHANG Mingsi, YANG Qingshuai, CAO Yaoyu, XU Yi, LI Xiangping. Progress in orbital angular momentum multiplexing and detection based on nano structures[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 251 Copy Citation Text show less
    References

    [1] Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

    [2] Darwin C G. Notes on the theory of radiation[J]. Proceedings of the Royal Society of London, 1932, 136(829): 36-52.

    [3] Firth W J, Skryabin D V. Optical solitons carrying orbital angular momentum[J]. Physical Review Letters, 1997, 79(13): 2450-2453.

    [4] Soskin M S, Gorshkov V N, Vasnetsov M V, et al. Topological charge and angular momentum of light beams carrying optical vortices[J]. Physical Review A, 1997, 56(5): 4064-4075.

    [5] Zhan Q W. Cylindrical vector beams: From mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

    [6] Yao A M, Padgett M J. Orbital angular momentum: Origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.

    [7] Wang S, Deng Z L, Wang F Q, et al. Role of optical angular momentum in enhanced transmission process of plasmonic coaxial nanoring aperture[J]. Acta Physica Sinica, 2019, 68(7): 261-267.

    [8] Wang S, Deng Z L, Cao Y Y, et al. Angular momentum-dependent transmission of circularly polarized vortex beams through a plasmonic coaxial nanoring[J]. IEEE Photonics Journal, 2018, 10(1): 1-9.

    [9] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782.

    [10] Liang L L, Feng Z W, Zhang Q M, et al. Continuous-wave near-infrared stimulated-emission depletion microscopy using downshifting lanthanide nanoparticles[J]. Nature Nanotechnology, 2021, 16(9): 975-980.

    [11] Willig K I, Rizzoli S O, Westphal V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 2006, 440(7086): 935-939.

    [12] Wang B, Shi J M, Zhang T Y, et al. Improved lateral resolution with an annular vortex depletion beam in STED microscopy[J]. Optics Letters, 2017, 42(23): 4885-4888.

    [13] Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum[J]. Laser & Photonics Review, 2008, 2(4): 299-313.

    [14] Simpson N B, Allen L, Padgett M J. Optical tweezers and optical spanners with Laguerre-Gaussian modes[J]. Journal of Modern Optics, 1996, 43(12): 2485-2491.

    [15] Paterson L, MacDonald M P, Arlt J, et al. Controlled rotation of optically trapped microscopic particles[J]. Science, 2001, 292(5518): 912-914.

    [16] MacDonald M P, Paterson L, Volke-Sepulveda K, et al. Creation and manipulation of three-dimensional optically trapped structures[J]. Science, 2002, 296(5570): 1101-1103.

    [17] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.

    [18] Molina-Terriza G, Torres J P, Torner L. Twisted photons[J]. Nature Physics, 2007, 3(5): 305-310.

    [19] Jiang M L, Zhang M S, Li X P, et al. Research progress of super-resolution optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180649.

    [20] Cao Y Y, Xie F, Zhang P D, et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electronic Engineering, 2017, 44(12): 1133-1145.

    [21] Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061.

    [22] Li X P, Cao Y Y, Tian N, et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2015, 2(6): 567-570.

    [23] Cao Y Y, Gan Z S, Jia B H, et al. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization[J]. Optics Express, 2011, 19(20): 19486-19494.

    [24] Franke-Arnold S, Barnett S M, Padgett M J, et al. Two-photon entanglement of orbital angular momentum states[J]. Physical Review A, 2002, 65(3): 033823.

    [25] Stav T, Faerman A, Maguid E, et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials[J]. Science, 2018, 361(6407): 1101-1104.

    [26] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316.

    [27] Vaziri A, Weihs G, Zeilinger A. Experimental two-photon, three-dimensional entanglement for quantum communication[J]. Physical Review Letters, 2002, 89(24): 240401.

    [28] Lv H, Ke X Z. Quantum communication coding based on orbital angular momentum of light[J]. Chinese Journal of Quantum Electronics, 2010, 27(2): 155-160.

    [29] Ding D S, Zhou Z Y, Shi B S. A quantum memory for high-dimensional states[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 442-448.

    [30] Deng Z L, Tu Q G, Li X P, et al. Multi-dimensional metasurface and its application in information encryption and anti-counterfeiting[J]. Infrared and Laser Engineering, 2020, 49(9): 80-95.

    [31] Dai Q F, Ouyang M, Yuan W, et al. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory[J]. Advanced Materials, 2017, 29(35): 1701918.

    [32] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413.

    [33] Xian M C, Xu Y, Ouyang X, et al. Segmented cylindrical vector beams for massively-encoded optical data storage[J]. Science Bulletin, 2020, 65(24): 2072-2079.

    [34] Gu M, Li X P, Cao Y Y. Optical storage arrays: A perspective for future big data storage[J]. Light: Science & Applications, 2014, 3(5): e177.

    [35] Li J X, Xu Y, Dai Q F, et al. Manipulating light-matter interaction in a gold nanorod assembly by plasmonic coupling[J]. Laser & Photonics Reviews, 2016, 10(5): 826-834.

    [36] Zhang Y N, Han J, Shi L, et al. Extremely polarized and efficient hot electron intraband luminescence from aluminum nanostructures for nonlinear optical encoding[J]. Laser & Photonics Reviews, 2021, 15(1): 2000339.

    [37] Li X P, Lan T H, Tien C H, et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nature Communications, 2012, 3: 998.

    [38] Zhu L W, Cao Y Y, Chen Q Q, et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods[J]. Opto-Electronic Advances, 2021, 4(11): 210002.

    [39] Li X P, Chon J W M, Evans R A, et al. Quantum-rod dispersed photopolymers for multi-dimensional photonic applications[J]. Optics Express, 2009, 17(4): 2954-2961.

    [40] Deng Z L, Tu Q A, Wang Y J, et al. Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography[J]. Advanced Materials, 2021, 33(43): e2103472.

    [41] Li X P, Chon J W M, Wu S H, et al. Rewritable polarization-encoded multilayer data storage in 2, 5-dimethyl-4-(p-nitrophenylazo) anisole doped polymer[J]. Optics Letters, 2007, 32(3): 277-279.

    [42] Ouyang X, Xu Y, Feng Z W, et al. Polychromatic and polarized multilevel optical data storage[J]. Nanoscale, 2019, 11(5): 2447-2452.

    [43] Cumpston B H, Ananthavel S P, Barlow S, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature, 1999, 398(6722): 51-54.

    [44] Ouyang X, Xu Y, Xian M C, et al. Encoding disorder gold nanorods for multi-dimensional optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180584.

    [45] Deng Z L, Jin M, Ye X, et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Advanced Functional Materials, 2020, 30(21): 1910610.

    [46] Ke X Z, Guo X L. Realization of optical phase information encode by using orbital angular momentum of light beam[J]. Chinese Journal of Quantum Electronics, 2015, 32(1): 69-76.

    [47] Zhang W H, Li C, Li W, et al. Performance of misaligned optical orbital angular momentum multiplexing communication system with MIMO equalization[J]. Chinese Journal of Quantum Electronics, 2018, 35(6): 723-729.

    [48] Chong A, Wan C H, Chen J, et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J]. Nature Photonics, 2020, 14(6): 350-354.

    [49] Karimi E, Schulz S A, de Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 2014, 3(5): e167.

    [50] Marrucci L, Karimi E, Slussarenko S, et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications[J]. Journal of Optics, 2011, 13(6): 064001.

    [51] Ni J C, Huang C, Zhou L M, et al. Multidimensional phase singularities in nanophotonics[J]. Science, 2021, 374(6566): abj0039.

    [52] Sroor H, Huang Y W, Sephton B, et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nature Photonics, 2020, 14(8): 498-503.

    [53] Forbes A, de Oliveira M, Dennis M R. Structured Light[J]. Nature Photonics, 2021, 15(4): 253-262.

    [54] Cai X L, Wang J W, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366.

    [55] Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding[J]. Nature Physics, 2008, 4(4): 282-286.

    [56] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.

    [57] Yan Y, Xie G D, Lavery M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876.

    [58] Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548.

    [59] Ren H R, Li X P, Zhang Q M, et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 2016, 352(6287): 805-809.

    [60] Ouyang X, Xu Y, Xian M C, et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing[J]. Nature Photonics, 2021, 15(12): 901-907.

    [61] Shen Y J, Wang X J, Xie Z W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 2019, 8: 90.

    [62] Yang Q, Xie Z, Zhang M. Generating tightly focused perfect optical vortex for ultra-secure optical encryption[J]., arXiv preprint ar Xiv: 2111.00773.

    [63] Padgett M J. Orbital angular momentum 25 years on[J]. Optics Express, 2017, 25(10): 11265.

    [64] Forbes A. Structured light from lasers[J]. Laser & Photonics Reviews, 2019, 13(11): 1900140.

    [65] Chong A, Wan C H, Chen J, et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J]. Nature Photonics, 2020, 14(6): 350-354.

    [66] Wei S B, Wang D P, Lin J, et al. Demonstration of orbital angular momentum channel healing using a Fabry-Pérot cavity[J]. Opto-Electronic Advances, 2018, 1(5): 180006.

    [67] Rubinsztein-Dunlop H, Forbes A, Berry M V, et al. Roadmap on structured light[J]. Journal of Optics, 2017, 19(1): 013001.

    [68] Hu T, Pan S X, Wang L, et al. Influence of underwater turbulence on channel capacity of orbital angular momentum communication system[J]. Chinese Journal of Quantum Electronics, 2018, 35(4): 499-506.

    [69] Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nature Photonics, 2020, 14(2): 102-108.

    [70] Chen J, Wan C H, Zhan Q W. Engineering photonic angular momentum with structured light: A review[J]. Advanced Photonics, 2021, 3(6): 064001.

    [71] Wen Y H, Chremmos I, Chen Y J, et al. Arbitrary multiplication and division of the orbital angular momentum of light[J]. Physical Review Letters, 2020, 124(21): 213901.

    [72] Strain M J, Cai X L, Wang J W, et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters[J]. Nature Communications, 2014, 5: 4856.

    [73] Bliokh K Y, Rodríguez-Fortuo F J, Nori F, et al. Spin-orbit interactions of light[J]. Nature Photonics, 2015, 9(12): 796-808.

    [74] Ren H R, Briere G, Fang X Y, et al. Metasurface orbital angular momentum holography[J]. Nature Communications, 2019, 10: 2986.

    [75] Berkhout G C G, Lavery M P J, Courtial J, et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 2010, 105(15): 153601.

    [76] Wen Y H, Chremmos I, Chen Y J, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes[J]. Physical Review Letters, 2018, 120(19): 193904.

    [77] Yue Z J, Ren H R, Wei S B, et al. Angular-momentum nanometrology in an ultrathin plasmonic topological insulator film[J]. Nature Communications, 2018, 9: 4413.

    [78] Zhang M S, Ren H R, Ouyang X, et al. Nanointerferometric discrimination of the spin-orbit Hall effect[J]. ACS Photonics, 2021, 8(4): 1169-1174.

    [79] Richards B, Wolf E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society of London, 1959, 253(1274): 358-379.

    OUYANG Xu, ZHANG Mingsi, YANG Qingshuai, CAO Yaoyu, XU Yi, LI Xiangping. Progress in orbital angular momentum multiplexing and detection based on nano structures[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 251
    Download Citation