• Journal of Innovative Optical Health Sciences
  • Vol. 2, Issue 3, 235 (2009)
PAULINO VACAS-JACQUES*, MARIJA STROJNIK, and GONZALO PAEZ
Author Affiliations
  • Centro de Investigaciones en Optica, Apartado Postal 1-948 37000, Leon, Guanajuato, Mexico
  • show less
    DOI: Cite this Article
    PAULINO VACAS-JACQUES, MARIJA STROJNIK, GONZALO PAEZ. EFFECTS OF SPECTRAL DEPENDENCE IN PASS-THROUGH PHOTON-BASED BIOMEDICAL TRANSILLUMINATION[J]. Journal of Innovative Optical Health Sciences, 2009, 2(3): 235 Copy Citation Text show less
    References

    [1] Diagnosis and management of dental caries throughout life, National Institutes of Health Consensus Statement 18, 1–30 (2001).

    [2] D. Boston, “Incipient and hidden caries,” Dent. Clin. N. Am. 49, xi–xii (2005).

    [3] C. Darling, G. Huynh, D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biomed. Opt. 11, 034023 (2006).

    [4] I. Pretty, “Caries detection and diagnosis: Novel technologies,” J. Dent. 34, 727–739 (2006).

    [5] G. Paez, M. Strojnik,M. Scholl, “Interferometric tissue characterization: I. Theory,” in Infrared Spaceborne Remote Sensing 2005, M. Strojnik, ed., Proc. SPIE 5883, Bellingham, 58830Y (2005).

    [6] M. Strojnik, G. Paez, “Interferometric tissue characterization: II. Experimental,” in Infrared Spaceborne Remote Sensing 2005, M. Strojnik, ed., Proc. SPIE 5883, Bellingham, 58830W (2005).

    [7] M. Strojnik, G. Paez, “Interferometric tissue characterization: III. Calibration,” in Infrared Spaceborne Remote Sensing 2005, M. Strojnik, ed., Proc. SPIE 5883, Bellingham, 58830V (2005).

    [8] G. Paez, M. Strojnik, S. Scholl, “Interferometric tissue characterization: IV. Material coherence function,” in Infrared Spaceborne Remote Sensing 2005, M. Strojnik, ed., Proc. SPIE 5883, Bellingham, 58830X (2005).

    [9] P. Vacas-Jacques, M. Strojnik, G. Paez, “Reduced coherence and calibration optimization for transillumination interferometry,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. Fujimoto, J. Izatt, V. Tuchin, eds., Proc. SPIE 6429, Bellingham, 64292K (2007).

    [10] P. Vacas-Jacques, M. Strojnik, G. Paez, “Monte- Carlo simulation of photon trans-illumination time of flight,” in Novel Optical Instrumentation for Biomedical Applications III, C. Depeursinge, ed., Proc. SPIE 6631, Bellingham, 663114 (2007).

    [11] P. Vacas-Jacques, M. Strojnik, G. Paez, “Optimal source bandwidth for pass-through photon-based trans-illumination interferometry,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII, J. Fujimoto, J. Izatt, V. Tuchin, eds., Proc. SPIE 6847, Bellingham, 68472S (2008).

    [12] P. Vacas-Jacques, G. Paez, M. Strojnik, “Passthrough photon-based biomedical transillumination,” J. Biomed. Opt. 13, 041307 (2008).

    [13] P. Vacas-Jacques, M. Strojnik, G. Paez, “Forwardcalculated analytical interferograms in pass-through photon-based biomedical transillumination,” J. Opt. Soc. Am. A 26, 602–612 (2009).

    [14] Y. Pan, R. Birngruber, J. Rosperich, R. Engelhardt, “Low-coherence optical tomography in turbid tissue: Theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995).

    [15] G. Xiong, P. Xue, J. Wu, Q. Miao, R. Wang, L. Ji, “Particle-fixed Monte Carlo model for optical coherence tomography,” Opt. Exp. 13, 2182–2195 (2005).

    [16] L. Wang, S. Jacques, L. Zheng, “MCML — Monte Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Progr. Biomed. 47, 131–146 (1995).

    [17] M. Yip, M. Carvalho, “A Monte-Carlo maplet for the study of the optical properties of biological tissues,” Comput. Phys. Commun. 177, 965–975 (2007).

    [18] R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna (2009).

    [19] H. van Staveren, C. Moes, J. van Marle, S. Prahl, M. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100nm,” Appl. Opt. 30, 4507–4514 (1991).

    [20] B. Devaraj, K. Fukuchi, K. Chan, M. Usa, Y. Tanno, M. Takeda, M. Kobayashi, H. Inaba, “Spectroscopic measurement of transmission characteristics of tissue-like phantoms,” in CLEO/Pacific Rim ’95 Tech. Dig. Ser., OSA, Washington, pp. 126–127 (1995).

    [21] C. B¨uhler, P. Ngaotheppitak, D. Fried, “Imaging of occlusal dental caries (decay) with near-IR light at 1310 nm,” Opt. Exp. 13, 573–582 (2005).

    [22] D. Fried, J. Featherstone, C. Darling, R. Jones, P. Ngaotheppitak, C. B¨uhler, “Early caries imaging and monitoring with near-infrared light,” Dent. Clin. N. Am. 49, 771–793 (2005).

    [23] M. Polyanskiy, Refractive index database, http:// refractiveindex.info.

    [24] G. Hale, M. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).

    [25] B. Pogue, M. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).

    PAULINO VACAS-JACQUES, MARIJA STROJNIK, GONZALO PAEZ. EFFECTS OF SPECTRAL DEPENDENCE IN PASS-THROUGH PHOTON-BASED BIOMEDICAL TRANSILLUMINATION[J]. Journal of Innovative Optical Health Sciences, 2009, 2(3): 235
    Download Citation