• Acta Optica Sinica
  • Vol. 36, Issue 2, 230006 (2016)
Hu Renzhi1、*, Wang Dan1, Xie Pinhua1、2, Chen Hao1, and Ling Liuyi1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/aos201636.0230006 Cite this Article Set citation alerts
    Hu Renzhi, Wang Dan, Xie Pinhua, Chen Hao, Ling Liuyi. Diode Laser Cavity Ring-Down Spectroscopy for Atmospheric NO2 Measurement[J]. Acta Optica Sinica, 2016, 36(2): 230006 Copy Citation Text show less
    References

    [1] Meena G S, Jadhav D B. Study of diurnal and seasonal variation of atmospheric NO2, O3, H2O and O4 at Pune, India[J]. Atmosfera, 2007, 20(3): 271-287.

    [2] Gao R S, Keim E R, Woodbridge E L, et al.. New photolysis system for NO2 measurements in the lower stratosphere[J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D10): 20673 -20681.

    [3] Dias-Lalcaca P, Brunner D, Imfeld W, et al.. An automated system for the measurement of nitrogen oxides and ozone concentrations from a passenger aircraft: Instrumentation and first results of the NOXAR project[J]. Environmental Science & Technology, 1998, 32(20): 3228- 3236.

    [4] Ryerson T B, Williams E J, Fehsenfeld F C. An efficient photolysis system for fast-response NO2 measurements[J]. Journal of Geophysical Research, 2000, 105(D21): 26447 -26461.

    [5] Lee J S, Kim Y J, Kuk B, et al.. Simultaneous measurements of atmospheric pollutants and visibility with a long-path DOAS system in urban areas[J]. Environmental Monitoring and Assessment, 2005, 104(1): 281-293.

    [6] Yu Minjie, Liu Minghui, Dong Zuoren, et al.. Study on measuring concentration of ammonia and sulphur dioxide by differential optical absorption spectrometry based on fast Fourier transform[J]. Chinese J Lasers, 2015, 42(9): 0915001.

    [7] Thornton J A, Wooldridge P J, Cohen R C. Atmospheric NO2: In situ laser-induced fluorescence detection at parts per trillion mixing ratios[J]. Analytical Chemistry, 2000, 72(3): 528-539.

    [8] Bradshaw J, Davis D, Crawford J, et al.. Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: Comparison of measurements with model results based on airborne observations during PEM-tropics A[J]. Geophysical Research Letters, 1999, 26 (4): 471-474.

    [9] Schiff H I, Karecki D R, Harris G W, et al.. A tunable diode laser system for aircraft measurements of trace gases[J]. Journal of Geophysical Research - Atmospheres, 1990, 95(D7): 10147-10153.

    [10] Li Y Q, Demerjian K L, Zahniser M S, et al.. Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system[J]. Journal of Geophysical Research - Atmospheres, 2004, 109(D16): D16S08.

    [11] Yuan Song, Kan Ruifeng, He Yabai, et al.. Tunable diode laser spectroscopy system for carbon dioxide monitoring[J]. Chinese J Lasers, 2014, 41(12): 1208003.

    [12] Kebabian P L, Herndon S C, Freedman A. Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy[J]. Analytical Chemistry, 2005, 77(2): 724-728.

    [13] Dhiman C, Khan M S, Reddy M N. Phase-shift cavity ring-down technique for detection of NO2 in ppm concentration[J]. Defence Science Journal, 2014, 64(5): 426-430.

    [14] Lamgridge J M, Ball S M, Jones R L. A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes[J]. Analyst, 2006, 131(8): 916-922.

    [15] Ling Liuyi, Xie Pinhua, Qin Min, et al.. Open-path incoherent broadband cavity enhanced absorption spectroscopy for measurements of atmospheric NO2[J]. Acta Optica Sinica, 2013, 33(1): 0130002.

    [16] Dong Meili, Xu Xuezhe, Zhao Weixiong, et al.. High-sensitive trace detection of NO2 with broadband cavity-enhanced spectroscopy[J]. Journal of Applied Optics, 2014, 35(2): 264-269.

    [17] Wu T, Zha Q Z, Chen W D, et al.. Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong[J]. Atmospheric Environment, 2014, 95: 544-551.

    [18] Wada R, Orr-Ewing A J. Continuous wave cavity ring-down spectroscopy measurement of NO2 mixing ratios in ambient air[J]. Analyst, 2005, 130(12): 1595-1600.

    [19] Osthoff H D, Brown S S, Ryerson T B, et al.. Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy[J]. Journal of Geophysical Research, 2006, 111(D12): D12305.

    [20] Steinbacher M, Zellweger C, Schwarzenbach B, et al.. Nitrogen oxide measurements at rural sites in switzerland: Bias of conventional measurement techniques[J]. Journal of Geophysical Research - Atmospheres, 2007,112(D11): D11307.

    [21] Ge Baozhu, Wang Zifa, Sun Yele, et al.. Comparison between cavity attenuated phase shift spectroscopy (CAPS) and chemiluminescencebased (CL) instrument in NO2 measurement in Beijing China[J]. Environmental Chemistry, 2014, 33(9): 1558-1565.

    [22] Richter A, Burrows J P, Nuss H, et al.. Increase in tropospheric nitrogen dioxide over China observed from space[J]. Nature, 2005, 437 (7055): 129-132.

    [23] Martin R V, Sioris C E, Chance K, et al.. Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America[J]. Journal of Geophysical Research - Atmospheres, 2006, 111(D15): D15308.

    [24] Hu Renzhi, Wang Dan, Xie Pinhua, et al.. Diode laser cavity ring-down spectroscopy for atmospheric NO3 radical measurement[J]. Acta Physica Sinica, 2014, 63(11): 110707.

    [25] Wang D, Hu R Z, Xie P H, et al.. Diode laser cavity ring-down spectroscopy for in situ measurement of NO3 radical in ambient air[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2015, 166: 23-29.

    [26] Rothman L S, Gordon I E, Barber R J, et al.. HITEMP, the high-temperature molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2010, 111(15): 2139-2150.

    [27] Voigt S, Orphal J, Burrows J P. The temperature and pressure dependence of the absorption cross-sections of NO2 in the 250-800 nm region measured by Fourier-transform spectroscopy[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 149(1-3): 1- 7.

    [28] Wang Dan, Hu Renzhi, Xie Pinhua, et al.. Fast and accurate extraction of ring-down time in cavity ring-down spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(10): 2845-2850.

    [29] Ling Liuyi, Qin Min, Xie Pinhua, et al.. Incoherent broadband cavity enhanced absorption spectroscopy for measurements of HONO and NO2[J]. Acta Physica Sinica, 2012, 61(14): 140703.

    [30] Fuchs H, Dube W P, Ciciora S J, et al.. Determination of inlet transmission and conversion efficiencies for in situ measurements of the nocturnal nitrogen oxides, NO3, N2O5 and NO2, via pulsed cavity ring-down spectroscopy[J]. Analytical Chemistry, 2008, 43(15): 6010- 6017.

    [31] Kebabian P L, Wood E C, Herndon S C, et al.. A practical alternative to chemiluminescence-based detection of nitrogen dioxide: Cavity attenuated phase shift spectroscopy[J]. Environmental Science & Technology, 2008, 42(16): 6040-6045.

    [32] Bodhaine B A, Wood N B, Dutton E G, et al.. On Rayleigh optical depth calculations[J]. Journal of Atmospheric and Oceanic Technology, 1999, 16(11): 1854-1861.

    [33] Fuchs H, Dube W P, Lerner B M, et al.. A sensitive and versatile detector for atmospheric NO2 and NOX based on blue diode laser cavity ring-down spectroscopy[J]. Environmental Science & Technology, 2009, 43(20): 7831-7836.

    [34] Serdyuchenko A, Gorshelev V, Weber M, et al.. High spectral resolution ozone absorption cross-sections - Part 2: Temperature dependence [J]. Atmospheric Measurement Techniques, 2014, 7(2): 625-636.

    [35] Volkamer R, Spietz P, Burrows J, et al.. High-resolution absorption cross-section of glyoxal in the UV-vis and IR spectral ranges[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172(1): 35-46.

    [36] Huisman A J, Hottle J R, Coens K L, et al.. Laser-induced phosphorescence for the in situ detection of glyoxal at part per trillion mixing ratios[J]. Analytical Chemistry, 2008, 80(15): 5884-5891.

    [37] Volkamer R, Molina L T, Molina M J, et al.. DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air[J]. Geophysical Research Letters, 2005, 32(8): L08806.

    [38] Brown S S, Stark H, Ravishankara A R. Cavity ring-down spectroscopy for atmospheric trace gas detection: Application to the nitrate radical (NO3)[J]. Applied Physics B: Lasers and Optics, 2002, 75(2-3): 173-182.

    CLP Journals

    [1] Zhang Lifang, Wang Fei, Yu Libin, Wu Qi, Yan Jianhua. On-Line Measuring Concentration of CH4 During Coal Particle Pyrolysis Based on Absorption Spectroscopy Technology[J]. Laser & Optoelectronics Progress, 2017, 54(8): 83001

    Hu Renzhi, Wang Dan, Xie Pinhua, Chen Hao, Ling Liuyi. Diode Laser Cavity Ring-Down Spectroscopy for Atmospheric NO2 Measurement[J]. Acta Optica Sinica, 2016, 36(2): 230006
    Download Citation