• Acta Optica Sinica
  • Vol. 41, Issue 13, 1306005 (2021)
Yong You1, Huiyi Guo1, wei Li1, Yili Ke1, Shaoxiang Duan1, Zhi Wang1, and Yange Liu1、*
Author Affiliations
  • 1[in Chinese]
  • 12Fiberhome Communication Technology Co., Ltd., Wuhan, Hubei 430074, China
  • show less
    DOI: 10.3788/AOS202141.1306005 Cite this Article Set citation alerts
    Yong You, Huiyi Guo, wei Li, Yili Ke, Shaoxiang Duan, Zhi Wang, Yange Liu. Surface-Mode Resonance Coupling Effect and High-Temperature Sensing Characteristics in Hollow-Core Photonic Bandgap Fibers[J]. Acta Optica Sinica, 2021, 41(13): 1306005 Copy Citation Text show less
    References

    [1] Poletti F, Wheeler N V, Petrovich M N et al. Towards high-capacity fibre-optic communications at the speed of light in vacuum[J]. Nature Photonics, 7, 279-284(2013).

    [2] Yang F, Gyger F, Thévenaz L. Intense Brillouin amplification in gas using hollow-core waveguides[J]. Nature Photonics, 14, 700-708(2020).

    [3] Peng X, Mielke M, Booth T. High average power, high energy 1.55 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber[J]. Optics Express, 19, 923-932(2011). http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-2-923

    [4] Poletti F, Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: technology and applications[J]. Nanophotonics, 2, 315-340(2013).

    [5] Poletti F. Broderick N G R, Richardson D J, et al. The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers[J]. Optics Express, 13, 9115-9124(2005).

    [6] Amezcua-Correa R. Broderick N G R, Petrovich M N, et al. Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers[J]. Optics Express, 14, 7974-7985(2006).

    [7] Aref S H, Amezcua-Correa R, Carvalho J P et al. Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement[J]. Optics Express, 17, 18669-18675(2009). http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-21-18669

    [8] Li X Y, Xu Z L, Yang H R et al. Analysis of thermal properties in a polarization-maintaining air-core photonic bandgap fiber[J]. Chinese Journal of Lasers, 43, 0405003(2016).

    [9] Digonnet M, Blin S, Kim H K et al. Sensitivity and stability of an air-core fibre-optic gyroscope[J]. Measurement Science and Technology, 18, 3089-3097(2007).

    [10] Ying D, Demokan M S, Zhang X et al. Analysis of Kerr effect in resonator fiber optic gyros with triangular wave phase modulation[J]. Applied Optics, 49, 529-535(2010). http://www.ncbi.nlm.nih.gov/pubmed/20090821

    [11] Wang Y P, Jin W, Ju J et al. Long period gratings in air-core photonic bandgap fibers[J]. Optics Express, 16, 2784-2790(2008).

    [12] Tan Z, Liao C R, Liu S et al. Simultaneous measurement sensors of temperature and strain based on hollow core fiber and fiber Bragg grating[J]. Acta Optica Sinica, 38, 1206007(2018).

    [13] Jin W, Cao Y, Yang F et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range[J]. Nature Communications, 6, 6767(2015).

    [14] Yang F, Jin W, Lin Y C et al. Hollow-core microstructured optical fiber gas sensors[J]. Journal of Lightwave Technology, 35, 3413-3424(2017).

    [15] Ermatov T, Noskov R E, Machnev A A et al. Multispectral sensing of biological liquids with hollow-core microstructured optical fibres[J]. Light: Science & Applications, 9, 173(2020).

    [16] Munzke D, Böhm M, Reich O. Gaseous oxygen detection using hollow-core fiber-based linear cavity ring-down spectroscopy[J]. Journal of Lightwave Technology, 33, 2524-2529(2015).

    [17] Lee K S, Lee Y K, Jang S H. A novel grating modulation technique for photonic bandgap fiber gas sensors[J]. IEEE Photonics Technology Letters, 23, 624-626(2011).

    [18] Cubillas A M, Silva-Lopez M, Lazaro J M et al. Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm[J]. Optics Express, 15, 17570-17576(2007).

    [19] Lehmann H, Bartelt H, Willsch R et al. In-line gas sensor based on a photonic bandgap fiber with laser-drilled lateral microchannels[J]. IEEE Sensors Journal, 11, 2926-2931(2011).

    [20] Lim S D, Ma K, Jeong J H et al. In situ gas sensing using a remotely detectable probe with replaceable insert[J]. Optics Express, 20, 1727-1732(2012).

    [21] Song J M, Sun K, Xu X B. Scattering loss analysis and structure optimization of hollow-core photonic bandgap fibers[J]. Chinese Journal of Lasers, 42, 1105003(2015).

    [22] Yang Y J, Homma O, Urata S et al. Topological pruning enables ultra-low Rayleigh scattering in pressure-quenched silica glass[J]. Npj Computational Materials, 6, 139(2020).

    [23] Chen X, Hu X W, Yang L Y et al. Double negative curvature anti-resonance hollow core fiber[J]. Optics Express, 27, 19548-19554(2019). http://www.ncbi.nlm.nih.gov/pubmed/31503712

    [24] White T P, Kuhlmey B T. McPhedran R C, et al. Multipole method for microstructured optical fibers I formulation[J]. Journal of the Optical Society of America B, 19, 2322-2330(2002).

    [25] Zhao H, Chen M, Li G. Temperature dependence of birefringence in polarization-maintaining photonic crystal fibres[J]. Chinese Physics B, 21, 558-563(2012).

    [26] Fokoua E N, Petrovich M N, Bradley T et al. How to make the propagation time through an optical fiber fully insensitive to temperature variations[J]. Optica, 4, 659-668(2017). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-4-6-659

    [27] Liu Y G, Liu B, Feng X H et al. High-birefringence fiber loop mirrors and their applications as sensors[J]. Applied Optics, 44, 2382-2390(2005).

    Yong You, Huiyi Guo, wei Li, Yili Ke, Shaoxiang Duan, Zhi Wang, Yange Liu. Surface-Mode Resonance Coupling Effect and High-Temperature Sensing Characteristics in Hollow-Core Photonic Bandgap Fibers[J]. Acta Optica Sinica, 2021, 41(13): 1306005
    Download Citation