• Opto-Electronic Engineering
  • Vol. 46, Issue 9, 190053 (2019)
Jin Yao1、2, Zhang Rui1、2, and Yin Dong1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2019.190053 Cite this Article
    Jin Yao, Zhang Rui, Yin Dong. Object detection for small pixel in urban roads videos[J]. Opto-Electronic Engineering, 2019, 46(9): 190053 Copy Citation Text show less
    References

    [1] Lowe D G. Object recognition from local scale-invariant features[C]//The Proceedings of the 7th IEEE International Conference on Computer Vision, 1999, 2: 1150–1157.

    [2] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91–110.

    [3] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, 1: 886–893.

    [4] Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971–987.

    [5] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297.

    [6] Ho T K. Random decision forests[C]//Proceedings of the 3rd International Conference on Document Analysis and Recognition, 1995, 1: 278–282.

    [7] Luo Z J, Zeng G Q. Space objects detection in video satellite images using improved MTI algorithm[J]. Opto-Electronic Engineering, 2018, 45(8): 180048.

    [8] Fan X S, Xu Z Y, Zhang J L. Dim small target tracking based on improved particle filter[J]. Opto-Electronic Engineering, 2018, 45(8): 170569.

    [9] Schroff F, Kalenichenko D, Philbin J. FaceNet: a unified embedding for face recognition and clustering[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 815–823.

    [10] Wang X H, Gao L L, Wang P, et al. Two-stream 3-D convNet fusion for action recognition in videos with arbitrary size and length[J]. IEEE Transactions on Multimedia, 2018, 20(3): 634–644.

    [11] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580–587.

    [12] Girshick R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision, 2015: 1440–1448.

    [13] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015: 91–99.

    [14] Shrivastava A, Gupta A, Girshick R. Training region-based object detectors with online hard example mining[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 761–769.

    [15] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779–788.

    [16] Uijlings J R R, Van De Sande K E A, Gevers T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154–171.

    [17] Zitnick C L, Dollár P. Edge boxes: locating object proposals from edges[C]//Proceedings of the 13th European Conference on Computer Vision, 2014: 391–405.

    [18] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770–778.

    [19] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 936–944.

    [20] Dai W C, Jin L X, Li G N, et al. Real-time airplane detection algorithm in remote-sensing images based on improved YOLOv3[J]. Opto-Electronic Engineering, 2018, 45(12): 180350.

    [21] Bodla N, Singh B, Chellappa R, et al. Soft-NMS—improving object detection with one line of code[C]//Proceedings of 2017 IEEE International Conference on Computer Vision, 2017: 5562–5570.

    [22] He Y H, Zhang X Y, Savvides M, et al. Softer-NMS: rethinking bounding box regression for accurate object detection[J]. ar-Xiv:1809.08545v1[cs.CV], 2018.

    CLP Journals

    [1] Zhang Ruzhen, Zhang Jianlin, Qi Xiaoping, Zuo Haorui, Xu Zhiyong. Infrared target detection and recognition in complex scene[J]. Opto-Electronic Engineering, 2020, 47(10): 200314

    [2] Dai Teng, Zhang Ke, Yin Dong. An end-to-end neural network for mobile phone detection in driving scenarios[J]. Opto-Electronic Engineering, 2021, 48(4): 200325

    Jin Yao, Zhang Rui, Yin Dong. Object detection for small pixel in urban roads videos[J]. Opto-Electronic Engineering, 2019, 46(9): 190053
    Download Citation