• Advanced Photonics
  • Vol. 5, Issue 6, 066002 (2023)
Jingya Xie1, Jun Qian1, Tengjiao Wang1, Linjie Zhou2、*, Xiaofei Zang1, Lin Chen1, Yiming Zhu1、*, and Songlin Zhuang1
Author Affiliations
  • 1University of Shanghai for Science and Technology, Terahertz Technology Innovation Research Institute, Shanghai Key Laboratory of Modern Optical System, Shanghai, China
  • 2Shanghai Jiao Tong University, State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.5.6.066002 Cite this Article Set citation alerts
    Jingya Xie, Jun Qian, Tengjiao Wang, Linjie Zhou, Xiaofei Zang, Lin Chen, Yiming Zhu, Songlin Zhuang. Integrated terahertz vortex beam emitter for rotating target detection[J]. Advanced Photonics, 2023, 5(6): 066002 Copy Citation Text show less
    References

    [1] S. J. Ostro. Planetary radar astronomy. Rev. Mod. Phys., 65, 1235(1993).

    [2] Y. T. Chan, F. L. Jardine. Target localization and tracking from Doppler-shift measurements. IEEE J. Ocean. Eng., 15, 251-257(1990).

    [3] J. N. J. Cafarelli. Doppler frequency position fixing method(1961).

    [4] S. C. Jasper. Method of Doppler searching in a digital GPS receiver(1987).

    [5] Y. D. Zhao et al. Detection of moving targets based on Doppler spectrum analysis technique for passive coherent radar. J. Rad., 2, 247-256(2013).

    [6] Z. Y. Guo et al. Research advances on the rotational Doppler effect of vortex electromagnetic waves. J. Rad., 10, 725-739(2021).

    [7] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A., 45, 8185-8189(1992).

    [8] N. Gerard. Doppler effect induced by rotating lenses. Opt. Commun., 132, 8-14(1996).

    [9] M. P. J. Lavery et al. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [10] H. Zhou et al. Theoretical analysis and experimental verification on optical rotational Doppler effect. Opt. Express, 24, 10050-10056(2016).

    [11] Y. W. Zhai et al. Detection of angular acceleration based on optical rotational Doppler effect. Opt. Express, 27, 15518-15527(2019).

    [12] Y. W. Zhai et al. Remote detection of a rotator based on rotational Doppler effect. Appl. Phys. Express, 13, 022012(2020).

    [13] S. Qiu et al. Spinning object detection based on perfect optical vortex. Opt. Lasers Eng., 124, 105842(2020).

    [14] K. Liu et al. Microwave imaging of spinning object using orbital angular momentum. J. Appl. Phys., 122, 124903(2017).

    [15] Z. Zhou et al. Rotational Doppler resolution of spinning target detection based on OAM beams. IEEE Sens. Lett., 3, 18509557(2019).

    [16] C. Brousseau, K. Mahdjoubi, O. Emile. Measurement of the rotational sense and velocity of an object using OAM wave in the radio-frequency band. Electron. Lett., 55, 709-711(2019).

    [17] K. Miyamoto et al. Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate. Appl. Phys. Lett., 104, 261104(2014).

    [18] X. F. Zang et al. Metasurfaces for manipulating terahertz waves. Light: Adv. Manuf., 2, 148-172(2021).

    [19] J. W. He et al. Generation and evolution of the terahertz vortex beam. Opt. Express, 21, 20230-20239(2013).

    [20] A. I. Hernandez-Serrano, E. Castro-Camus, D. Lopez-Mago. q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing. J. Infrared Millimeter Terahertz Waves, 38, 938-944(2017).

    [21] S. J. Ge et al. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal. Opt. Express, 25, 12349-12356(2017).

    [22] Z. W. Xie et al. Spatial terahertz modulator. Sci. Rep., 3, 3347(2013).

    [23] S. Janne et al. Holograms for shaping radio-wave fields. J. Opt., 4, S161-S167(2002).

    [24] V. C. Chen et al. Micro-Doppler effect in radar-phenomenon, model and simulation study. IEEE Trans. Aerosp. Electron. Syst., 42, 2-21(2006).

    [25] V. C. Chen. Micro-Doppler effect of micro-motion dynamics: a review. Proc. SPIE, 5102, 240-249(2003).

    [26] V. C. Chen, F. Y. Li. Analysis of micro-Doppler signatures. IEE Proc. Radar Sonar Navig., 150, 271-276(2003).

    [27] V. C. Chen, I. Ebrary. The Micro-Doppler Effect in Radar(2011).

    [28] P. A. George et al. Integrated waveguide-coupled terahertz microcavity resonators. Appl. Phys. Lett., 91, 191122(2007).

    [29] Z. W. Wang et al. On-chip single-mode high-Q terahertz whispering gallery mode resonator. Opt. Lett., 44, 2835-2838(2019).

    [30] J. Y. Xie et al. Terahertz integrated device: high-Q silicon dielectric resonators. Opt. Mater. Express, 8, 50-58(2018).

    [31] J. Y. Xie et al. Terahertz-frequency temporal differentiator enabled by a high-Q resonator. Opt. Express, 28, 7898-7905(2020).

    [32] X. L. Cai et al. Integrated compact optical vortex beam emitters. Science, 338, 363-366(2012).

    [33] Z. K. Shao et al. Spin-orbit interaction of light induced by transverse spin angular momentum engineering. Nat. Commun., 9, 926(2018).

    [34] X. K. Wang et al. Longitudinal field characterization of converging terahertz vortices with linear and circular polarizations. Opt. Express, 24, 7178-7190(2016).

    [35] G. B. Wu et al. Orbital angular momentum (OAM) mode-reconfigurable discrete dielectric lens operating at 300 GHz. IEEE Trans. Terahertz Sci. Technol., 10, 480-489(2020).

    [36] R. Imai et al. Generation of broadband terahertz vortex beams. Opt. Lett., 39, 3714-3717(2014).

    [37] B. A. Knyazev et al. Generation of terahertz surface plasmon polaritons using nondiffractive Bessel beams with orbital angular momentum. Phys. Rev. Lett., 115, 163901(2015).

    [38] V. Boris et al. Fabrication and characterization of diffractive phase plates for forming high-power terahertz vortex beams using free electron laser radiation. Opt. Quantum Electron., 48, 223(2016).

    [39] S. J. Ge et al. Generating, separating and polarizing terahertz vortex beams via liquid crystals with gradient-rotation directors. Crystals, 7, 314(2017).

    [40] P. Jan et al. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science, 346, 67-71(2014).

    [41] M. Born, E. Wolf. Principles of Optics(1980).

    [42] V. G. Farafonov, V. B. Il’m. Rayleigh approximation for light scattering at parallelepipeds. J. Opt. Technol., 81, 375-381(2014).

    Jingya Xie, Jun Qian, Tengjiao Wang, Linjie Zhou, Xiaofei Zang, Lin Chen, Yiming Zhu, Songlin Zhuang. Integrated terahertz vortex beam emitter for rotating target detection[J]. Advanced Photonics, 2023, 5(6): 066002
    Download Citation