• Laser & Optoelectronics Progress
  • Vol. 62, Issue 2, 0215005 (2025)
Xiaofang Ou*, Fengchun Han, Jing Tian, Jijie Tang, and Zhengtao Yang
Author Affiliations
  • School of Traffic Management, People's Public Security University of China, Beijing 100038, China
  • show less
    DOI: 10.3788/LOP241065 Cite this Article Set citation alerts
    Xiaofang Ou, Fengchun Han, Jing Tian, Jijie Tang, Zhengtao Yang. Electric Tricycle Detection Based on Improved YOLOv5s Model[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0215005 Copy Citation Text show less
    References

    [2] Girshick R, Donahue J, Darrell T et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C], 580-587(2014).

    [3] Girshick R. Fast R-CNN[C], 1440-1448(2015).

    [4] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [5] He K M, Zhang X Y, Ren S Q et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015).

    [6] Liu W, Anguelov D, Erhan D et al. SSD: single shot multibox detector[M]. Computer vision-ECCV 2016, 9905, 21-37(2016).

    [7] Lin T Y, Goyal P, Girshick R et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 318-327(2020).

    [8] Tan M X, Pang R M, Le Q V. EfficientDet: scalable and efficient object detection[C], 10778-10787(2020).

    [9] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).

    [10] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. http://arxiv.org/abs/1804.02767v1

    [11] Bochkovskiy A, Wang C Y, Liao H. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. https://arxiv.org/abs/2004.10934

    [12] Ultralytics. YOLOv5[EB/OL]. https://github.com/ultralytics/yolov5

    [13] Wang H Z, Song M X, Cheng C et al. Road object detection method based on improved YOLOv5 algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 54, 2658-2667(2024).

    [14] Zhou Q, Tan G Q, Yin S L et al. Road object detection algorithm based on improved YOLOv5s[J]. Chinese Journal of Liquid Crystals and Displays, 38, 680-690(2023).

    [15] Chen X F, Wang C X, Wu Y C et al. A real-time detection method of vehicle target based on improved YOLOv5s algorithm[J]. Journal of Harbin University of Science and Technology, 29, 107-114(2024).

    [16] Niu W H, Yin M M. Road small target detection algorithm based on improved YOLOv5[J]. Chinese Journal of Sensors and Actuators, 36, 36-44(2023).

    [17] Huangfu J Y, Meng Q, Meng L C et al. YOLOv5 traffic object detection based on GhostNet and attention mechanism[J]. Computer Systems & Applications, 32, 149-160(2023).

    [18] Zhao L, Jiao L K, Zhai R et al. YOLOv5-based lightweight algorithm for detecting bottle-cap packaging defects[J]. Laser & Optoelectronics Progress, 60, 2210009(2023).

    [19] Zhang X Z, Zhao H D, Liu W N et al. An infrared vehicle detection method based on improved YOLOv5[J]. Infrared and Laser Engineering, 52, 20230245(2023).

    [20] Yang J H, Li H, Du Y Y et al. A lightweight object detection algorithm based on improved YOLOv5s[J]. Electronics Optics & Control, 30, 24-30(2023).

    [21] Zhang X Z, Qiu Y, Zhang C. Pedestrian target detection in subway scene using improved YOLOv5s algorithm[J]. Laser & Optoelectronics Progress, 60, 0610013(2023).

    [22] Chen S Q, Wang C Q, Zhou Y J. A pedestrian detection method based on YOLOv5s and image fusion[J]. Electronics Optics & Control, 29, 96-101, 131(2022).

    [23] Shaker A M, Maaz M, Rasheed H et al. SwiftFormer: efficient additive attention for transformer-based real-time mobile vision applications[EB/OL]. https://arxiv.org/abs/2303.15446

    [24] Ma Y J, Cheng S S, Ma Y T et al. Review of convolutional neural network and its application in intelligent transportation system[J]. Journal of Traffic and Transportation Engineering, 21, 48-71(2021).