[1] E.Voutier. Physics perspectives at JLab with a polarized positron beam. EPJ Web of Conferences 73(2014).
[2] Q.Collaboration et al. First determination of the weak charge of the proton. Phys. Rev. Lett., 111, 141803(2013).
[3] G.Adams, S.Ahmad, E.Anciant, M.Anghinolfi, B.Asavapibhop, G.Asryan, G.Audit, T.Auger, H.Avakian, B. A.Mecking et al. The CEBAF large acceptance spectrometer (CLAS). Nucl. Instrum. Methods Phys. Res., Sect. A, 503, 513-553(2003).
[4] A.Sokolov, I.Ternov. On polarization and spin effects in the theory of synchrotron radiation. Sov. Phys.-Dokl., 8, 1203-1205(1964).
[5] I. M.Ternov. Synchrotron radiation. Phys.-Usp., 38, 409(1995).
[6] V. N.Baier, V. M.Katkov. Radiational polarization of electrons in inhomogeneous magnetic field. Phys. Lett. A, 24, 327-329(1967).
[7] V.Baier. Radiative polarization of electrons in storage rings. Sov. Phys.-Dokl., 14, 695(1972).
[8] Y. S.Derbenev, A.Kondratenko. Polarization kinetics of particles in storage rings. Sov. Phys.-JETP, 37, 968(1973).
[9] T.Aoki, K.Dobashi, M.Fukuda, A.Higurashi, T.Hirose, T.Iimura, Y.Kurihara, T.Okugi, T.Omori, I.Sakai et al. Production of high brightness γ rays through backscattering of laser photons on high-energy electrons. Phys. Rev. Spec. Top.-Accel. Beams, 6, 091001(2003).
[10] M.Fukuda, T.Hirose, Y.Kurihara, R.Kuroda, M.Nomura, A.Ohashi, T.Okugi, T.Omori, T.Saito, K.Sakaue et al. Efficient propagation of polarization from laser photons to positrons through compton scattering and electron-positron pair creation. Phys. Rev. Lett., 96, 114801(2006).
[11] X.Ji. Deeply virtual compton scattering. Phys. Rev. D, 55, 7114(1997).
[12] A. P.Potylitsin. Production of polarized positrons through interaction of longitudinally polarized electrons with thin targets. Nucl. Instrum. Methods Phys. Res., Sect. A, 398, 395-398(1997).
[13] Y. Y.Chen, K. Z.Hatsagortsyan, C. H.Keitel, J. X.Li, Y. F.Li, R.Shaisultanov, F.Wan. Polarized ultrashort brilliant multi-gev γ rays via single-shot laser-electron interaction. Phys. Rev. Lett., 124, 014801(2020).
[14] C.Danson, D.Hillier, N.Hopps, D.Neely. Petawatt class lasers worldwide. High Power Laser Sci. Eng., 3, e3(2015).
[15] G.Cheriaux, V.Chvykov, G.Kalinchenko, A.Maksimchuk, T.Matsuoka, G.Mourou, J.Nees, T.Planchon, P.Rousseau, V.Yanovsky et al. Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate. Opt. Express, 16, 2109-2114(2008).
[16] I. W.Choi, Y. G.Kim, H. W.Lee, S. K.Lee, C. H.Nam, J. H.Sung, J. W.Yoon. Realization of laser intensity over 1023 W/cm2. Optica, 8, 630-635(2021).
[20] C.Benedetti, S. S.Bulanov, J.Daniels, A. J.Gonsalves, W. P.Leemans, H.-S.Mao, D. E.Mittelberger, K.Nakamura, C. B.Schroeder, C.Tóth et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett., 113, 245002(2014).
[21] C.Benedetti, J. H.Bin, S. S.Bulanov, J.Daniels, T. C. H.De Raadt, A. J.Gonsalves, K.Nakamura, C.Pieronek, S.Steinke, J.Van Tilborg. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett., 122, 084801(2019).
[22] V. I.Ritus. Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Sov. Laser Res., 6, 497-617(1985).
[23] K. Z.Hatsagortsyan, C. H.Keitel, J.-X.Li, Y.-F.Li, R.Shaisultanov, F.Wan. Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams. Phys. Lett. B, 800, 135120(2020).
[24] Y.-Y.Chen, K. Z.Hatsagortsyan, P.-L.He, C. H.Keitel, R.Shaisultanov. Polarized positron beams via intense two-color laser pulses. Phys. Rev. Lett., 123, 174801(2019).
[25] Y. Y.Chen, H. S.Hu, Y. F.Li, W. M.Wang. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field. Phys. Rev. Lett., 125, 044802(2020).
[26] B.King, D.Seipt. Spin- and polarization-dependent locally-constant-field-approximation rates for nonlinear compton and breit-wheeler processes. Phys. Rev. A, 102, 052805(2020).
[27] A.Ilderton, B.King, S.Tang. Loop spin effects in intense background fields. Phys. Rev. D, 102, 076013(2020).
[28] V.Dinu, G.Torgrimsson. Approximating higher-order nonlinear QED processes with first-order building blocks. Phys. Rev. D, 102, 016018(2020).
[29] G.Torgrimsson. Loops and polarization in strong-field QED. New J. Phys., 23, 065001(2021).
[30] D.Del Sorbo, C. P.Ridgers, D.Seipt, A. G.Thomas. Ultrafast polarization of an electron beam in an intense bichromatic laser field. Phys. Rev. A, 100, 061402(2019).
[31] J.-X.Li, Y.-F.Li, Y.-T.Li, H.-H.Song, W.-M.Wang. Spin-polarization effects of an ultrarelativistic electron beam in an ultraintense two-color laser pulse. Phys. Rev. A, 100, 033407(2019).
[32] K. Z.Hatsagortsyan, C. H.Keitel, J.-X.Li, Y.-F.Li, R.Shaisultanov, F.Wan. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse. Phys. Rev. Lett., 122, 154801(2019).
[33] N.Elkina, B.King, H.Ruhl. Photon polarization in electron-seeded pair-creation cascades. Phys. Rev. A, 87, 042117(2013).
[34] Y.-Y.Chen, R.-T.Guo, K. Z.Hatsagortsyan, C. H.Keitel, J.-X.Li, R.Shaisultanov, F.Wan, Y.Wang, Z.-F.Xu. High-energy γ-photon polarization in nonlinear breit-wheeler pair production and γ polarimetry. Phys. Rev. Res., 2, 032049(2020).
[35] Y.-Y.Chen, R.-T.Guo, K. Z.Hatsagortsyan, C. H.Keitel, J.-X.Li, X.-G.Ren, R.Shaisultanov, F.Wan, Z.-F.Xu, K.Xue. Generation of arbitrarily polarized GeV lepton beams via nonlinear Breit-Wheeler process.
[36] I.Gol’dman. Intensity effects in compton scattering. Sov. Phys.-JETP, 19, 954(1964).
[37] A.Nikishov, V.Ritus. Quantum processes in the field of a plane electromagnetic wave and in a constant field. I. Sov. Phys.-JETP, 19, 529-541(1964).
[38] G. L.Kotkin, V. G.Serbo, V. I.Telnov. Electron (positron) beam polarization by Compton scattering on circularly polarized laser photons. Phys. Rev. Spec. Top.-Accel. Beams, 6, 011001(2003).
[39] D. Y.Ivanov, G. L.Kotkin, V. G.Serbo. Complete description of polarization effects in emission of a photon by an electron in the field of a strong laser wave. Eur. Phys. J. C, 36, 127-145(2004).
[40] D. Y.Ivanov, G. L.Kotkin, V. G.Serbo. Complete description of polarization effects in e+e− pair productionby a photon in the field of a strong laser wave. Eur. Phys. J. C, 40, 27-40(2005).
[41] T. D.Arber, A. R.Bell, K.Bennett, T. G.Blackburn, C. S.Brady, R.Duclous, J. G.Kirk, C. P.Ridgers. Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions. J. Comput. Phys., 260, 273-285(2014).
[42] N.Elkina, A.Fedotov, I. Y.Kostyukov, M.Legkov, N.Narozhny, E.Nerush, H.Ruhl. QED cascades induced by circularly polarized laser fields. Phys. Rev. Spec. Top.-Accel. Beams, 14, 054401(2011).
[43] D. G.Green, C. N.Harvey. SIMLA: Simulating particle dynamics in intense laser and other electromagnetic fields via classical and quantum electrodynamics. Comput. Phys. Commun., 192, 313-321(2015).
[44] V.Katkov, V. M.Strakhovenko et al. Electromagnetic Processes at High Energies in Oriented Single Crystals(1998).
[45] V.Dinu, C.Harvey, A.Ilderton, M.Marklund, G.Torgrimsson. Quantum radiation reaction: From interference to incoherence. Phys. Rev. Lett., 116, 044801(2016).
[46] A.Di Piazza, C.Keitel, S.Meuren, M.Tamburini. Implementing nonlinear compton scattering beyond the local-constant-field approximation. Phys. Rev. A, 98, 012134(2018).
[47] A.Ilderton, B.King, D.Seipt. Extended locally constant field approximation for nonlinear compton scattering. Phys. Rev. A, 99, 042121(2019).
[48] A.Di Piazza, T.Podszus. High-energy behavior of strong-field QED in an intense plane wave. Phys. Rev. D, 99, 076004(2019).
[49] A.Ilderton. Note on the conjectured breakdown of QED perturbation theory in strong fields. Phys. Rev. D, 99, 085002(2019).
[50] A.Di Piazza, C. H.Keitel, S.Meuren, M.Tamburini. Improved local-constant-field approximation for strong-field QED codes. Phys. Rev. A, 99, 022125(2019).
[51] S.Bastrakov, E.Efimenko, A.Gonoskov, A.Ilderton, M.Marklund, I.Meyerov, A.Muraviev, A.Sergeev, I.Surmin, E.Wallin. Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments. Phys. Rev. E, 92, 023305(2015).
[52] B.King, S.Tang. Nonlinear compton scattering of polarized photons in plane-wave backgrounds. Phys. Rev. A, 102, 022809(2020).
[53] A.Di Piazza, T. N.Wistisen. Numerical approach to the semiclassical method of radiation emission for arbitrary electron spin and photon polarization. Phys. Rev. D, 100, 116001(2019).
[54] T. N.Wistisen. Numerical approach to the semiclassical method of pair production for arbitrary spins and photon polarization. Phys. Rev. D, 101, 076017(2020).
[55] V. N.Baier, V. M.Katkov, V. M.Strakhovenko. Quantum radiation theory in inhomogeneous external fields. Nucl. Phys. B, 328, 387(1989).
[56] T.Blackburn, A.Ilderton, M.Marklund, C.Murphy. Scaling laws for positron production in laser–electron-beam collisions. Phys. Rev. A, 96, 022128(2017).
[57] R.Alkofer, Z.-L.Li, O.Olugh, B.-S.Xie. Pair production in differently polarized electric fields with frequency chirps. Phys. Rev. D, 99, 036003(2019).
[58] L. H.Thomas. The motion of the spinning electron. Nature, 117, 514(1926).
[59] L. H.Thomas. I. The kinematics of an electron with an axis. London, Edinburgh Dublin Philos. Mag. J. Sci., 3, 1-22(1927).
[60] V.Bargmann, L.Michel, V. L.Telegdi. Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett., 2, 435(1959).
[61] Z.-K.Dou, J.-X.Li, J.-R.Ren, F.Wan, W.-M.Wang, Z.-F.Xu, K.Xue, T.-P.Yu, Q.Zhao, Y.-T.Zhao. Generation of highly-polarized high-energy brilliant
[62] Y.-Y.Chen, R.-T.Guo, K. Z.Hatsagortsyan, J.-X.Li, R.Shaisultanov, F.Wan, Y.Wang, Z.-F.Xu. Stochasticity in radiative polarization of ultrarelativistic electrons in an ultrastrong laser pulse. Phys. Rev. Res., 2, 033483(2020).