• Matter and Radiation at Extremes
  • Vol. 7, Issue 1, 014401 (2022)
Ya-Nan Dai1, Bai-Fei Shen1、2, Jian-Xing Li3, Rashid Shaisultanov4、5, Karen Z. Hatsagortsyan4, Christoph H. Keitel4, and Yue-Yue Chen1、a)
Author Affiliations
  • 1Department of Physics, Shanghai Normal University, Shanghai 200234, China
  • 2State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
  • 3School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
  • 4Max-Planck-Institut fur Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
  • 5Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
  • show less
    DOI: 10.1063/5.0063633 Cite this Article
    Ya-Nan Dai, Bai-Fei Shen, Jian-Xing Li, Rashid Shaisultanov, Karen Z. Hatsagortsyan, Christoph H. Keitel, Yue-Yue Chen. Photon polarization effects in polarized electron–positron pair production in a strong laser field[J]. Matter and Radiation at Extremes, 2022, 7(1): 014401 Copy Citation Text show less
    References

    [1] E.Voutier. Physics perspectives at JLab with a polarized positron beam. EPJ Web of Conferences 73(2014).

    [2] Q.Collaboration et al. First determination of the weak charge of the proton. Phys. Rev. Lett., 111, 141803(2013).

    [3] S.Ahmad, G.Audit, G.Asryan, B.Asavapibhop, B. A.Mecking, G.Adams, M.Anghinolfi, H.Avakian, T.Auger, E.Anciant et al. The CEBAF large acceptance spectrometer (CLAS). Nucl. Instrum. Methods Phys. Res., Sect. A, 503, 513-553(2003).

    [4] A.Sokolov, I.Ternov. On polarization and spin effects in the theory of synchrotron radiation. Sov. Phys.-Dokl., 8, 1203-1205(1964).

    [5] I. M.Ternov. Synchrotron radiation. Phys.-Usp., 38, 409(1995).

    [6] V. N.Baier, V. M.Katkov. Radiational polarization of electrons in inhomogeneous magnetic field. Phys. Lett. A, 24, 327-329(1967).

    [7] V.Baier. Radiative polarization of electrons in storage rings. Sov. Phys.-Dokl., 14, 695(1972).

    [8] Y. S.Derbenev, A.Kondratenko. Polarization kinetics of particles in storage rings. Sov. Phys.-JETP, 37, 968(1973).

    [9] I.Sakai, M.Fukuda, T.Okugi, A.Higurashi, T.Iimura, T.Hirose, T.Aoki, K.Dobashi, T.Omori, Y.Kurihara et al. Production of high brightness γ rays through backscattering of laser photons on high-energy electrons. Phys. Rev. Spec. Top.-Accel. Beams, 6, 091001(2003).

    [10] T.Saito, Y.Kurihara, M.Fukuda, M.Nomura, K.Sakaue, R.Kuroda, T.Omori, T.Okugi, T.Hirose, A.Ohashi et al. Efficient propagation of polarization from laser photons to positrons through compton scattering and electron-positron pair creation. Phys. Rev. Lett., 96, 114801(2006).

    [11] X.Ji. Deeply virtual compton scattering. Phys. Rev. D, 55, 7114(1997).

    [12] A. P.Potylitsin. Production of polarized positrons through interaction of longitudinally polarized electrons with thin targets. Nucl. Instrum. Methods Phys. Res., Sect. A, 398, 395-398(1997).

    [13] F.Wan, Y. F.Li, C. H.Keitel, R.Shaisultanov, Y. Y.Chen, J. X.Li, K. Z.Hatsagortsyan. Polarized ultrashort brilliant multi-gev γ rays via single-shot laser-electron interaction. Phys. Rev. Lett., 124, 014801(2020).

    [14] N.Hopps, C.Danson, D.Hillier, D.Neely. Petawatt class lasers worldwide. High Power Laser Sci. Eng., 3, e3(2015).

    [15] G.Cheriaux, T.Planchon, V.Yanovsky, P.Rousseau, J.Nees, T.Matsuoka, A.Maksimchuk, V.Chvykov, G.Kalinchenko, G.Mourou et al. Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate. Opt. Express, 16, 2109-2114(2008).

    [16] H. W.Lee, J. H.Sung, Y. G.Kim, S. K.Lee, C. H.Nam, J. W.Yoon, I. W.Choi. Realization of laser intensity over 1023 W/cm2. Optica, 8, 630-635(2021).

    [17]

    [18]

    [19]

    [20] A. J.Gonsalves, C. B.Schroeder, D. E.Mittelberger, W. P.Leemans, C.Tóth, K.Nakamura, S. S.Bulanov, J.Daniels, C.Benedetti, H.-S.Mao et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett., 113, 245002(2014).

    [21] T. C. H.De Raadt, J.Daniels, J. H.Bin, C.Pieronek, S.Steinke, A. J.Gonsalves, K.Nakamura, C.Benedetti, S. S.Bulanov, J.Van Tilborg. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett., 122, 084801(2019).

    [22] V. I.Ritus. Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Sov. Laser Res., 6, 497-617(1985).

    [23] Y.-F.Li, J.-X.Li, K. Z.Hatsagortsyan, C. H.Keitel, R.Shaisultanov, F.Wan. Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams. Phys. Lett. B, 800, 135120(2020).

    [24] C. H.Keitel, Y.-Y.Chen, K. Z.Hatsagortsyan, P.-L.He, R.Shaisultanov. Polarized positron beams via intense two-color laser pulses. Phys. Rev. Lett., 123, 174801(2019).

    [25] W. M.Wang, H. S.Hu, Y. Y.Chen, Y. F.Li. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field. Phys. Rev. Lett., 125, 044802(2020).

    [26] D.Seipt, B.King. Spin- and polarization-dependent locally-constant-field-approximation rates for nonlinear compton and breit-wheeler processes. Phys. Rev. A, 102, 052805(2020).

    [27] S.Tang, B.King, A.Ilderton. Loop spin effects in intense background fields. Phys. Rev. D, 102, 076013(2020).

    [28] G.Torgrimsson, V.Dinu. Approximating higher-order nonlinear QED processes with first-order building blocks. Phys. Rev. D, 102, 016018(2020).

    [29] G.Torgrimsson. Loops and polarization in strong-field QED. New J. Phys., 23, 065001(2021).

    [30] C. P.Ridgers, D.Del Sorbo, A. G.Thomas, D.Seipt. Ultrafast polarization of an electron beam in an intense bichromatic laser field. Phys. Rev. A, 100, 061402(2019).

    [31] W.-M.Wang, H.-H.Song, J.-X.Li, Y.-F.Li, Y.-T.Li. Spin-polarization effects of an ultrarelativistic electron beam in an ultraintense two-color laser pulse. Phys. Rev. A, 100, 033407(2019).

    [32] F.Wan, J.-X.Li, K. Z.Hatsagortsyan, R.Shaisultanov, Y.-F.Li, C. H.Keitel. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse. Phys. Rev. Lett., 122, 154801(2019).

    [33] N.Elkina, H.Ruhl, B.King. Photon polarization in electron-seeded pair-creation cascades. Phys. Rev. A, 87, 042117(2013).

    [34] Z.-F.Xu, F.Wan, R.-T.Guo, R.Shaisultanov, Y.Wang, J.-X.Li, K. Z.Hatsagortsyan, C. H.Keitel, Y.-Y.Chen. High-energy γ-photon polarization in nonlinear breit-wheeler pair production and γ polarimetry. Phys. Rev. Res., 2, 032049(2020).

    [35] J.-X.Li, K. Z.Hatsagortsyan, F.Wan, X.-G.Ren, R.-T.Guo, Y.-Y.Chen, K.Xue, C. H.Keitel, Z.-F.Xu, R.Shaisultanov. Generation of arbitrarily polarized GeV lepton beams via nonlinear Breit-Wheeler process.

    [36] I.Gol’dman. Intensity effects in compton scattering. Sov. Phys.-JETP, 19, 954(1964).

    [37] V.Ritus, A.Nikishov. Quantum processes in the field of a plane electromagnetic wave and in a constant field. I. Sov. Phys.-JETP, 19, 529-541(1964).

    [38] V. I.Telnov, V. G.Serbo, G. L.Kotkin. Electron (positron) beam polarization by Compton scattering on circularly polarized laser photons. Phys. Rev. Spec. Top.-Accel. Beams, 6, 011001(2003).

    [39] G. L.Kotkin, D. Y.Ivanov, V. G.Serbo. Complete description of polarization effects in emission of a photon by an electron in the field of a strong laser wave. Eur. Phys. J. C, 36, 127-145(2004).

    [40] D. Y.Ivanov, G. L.Kotkin, V. G.Serbo. Complete description of polarization effects in e+e pair productionby a photon in the field of a strong laser wave. Eur. Phys. J. C, 40, 27-40(2005).

    [41] R.Duclous, A. R.Bell, K.Bennett, C. P.Ridgers, C. S.Brady, T. G.Blackburn, J. G.Kirk, T. D.Arber. Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions. J. Comput. Phys., 260, 273-285(2014).

    [42] N.Elkina, A.Fedotov, N.Narozhny, H.Ruhl, I. Y.Kostyukov, M.Legkov, E.Nerush. QED cascades induced by circularly polarized laser fields. Phys. Rev. Spec. Top.-Accel. Beams, 14, 054401(2011).

    [43] D. G.Green, C. N.Harvey. SIMLA: Simulating particle dynamics in intense laser and other electromagnetic fields via classical and quantum electrodynamics. Comput. Phys. Commun., 192, 313-321(2015).

    [44] V.Katkov, V. M.Strakhovenko et al. Electromagnetic Processes at High Energies in Oriented Single Crystals(1998).

    [45] A.Ilderton, G.Torgrimsson, V.Dinu, M.Marklund, C.Harvey. Quantum radiation reaction: From interference to incoherence. Phys. Rev. Lett., 116, 044801(2016).

    [46] S.Meuren, M.Tamburini, A.Di Piazza, C.Keitel. Implementing nonlinear compton scattering beyond the local-constant-field approximation. Phys. Rev. A, 98, 012134(2018).

    [47] B.King, A.Ilderton, D.Seipt. Extended locally constant field approximation for nonlinear compton scattering. Phys. Rev. A, 99, 042121(2019).

    [48] A.Di Piazza, T.Podszus. High-energy behavior of strong-field QED in an intense plane wave. Phys. Rev. D, 99, 076004(2019).

    [49] A.Ilderton. Note on the conjectured breakdown of QED perturbation theory in strong fields. Phys. Rev. D, 99, 085002(2019).

    [50] M.Tamburini, S.Meuren, A.Di Piazza, C. H.Keitel. Improved local-constant-field approximation for strong-field QED codes. Phys. Rev. A, 99, 022125(2019).

    [51] A.Ilderton, I.Surmin, A.Gonoskov, A.Muraviev, S.Bastrakov, A.Sergeev, M.Marklund, I.Meyerov, E.Efimenko, E.Wallin. Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments. Phys. Rev. E, 92, 023305(2015).

    [52] B.King, S.Tang. Nonlinear compton scattering of polarized photons in plane-wave backgrounds. Phys. Rev. A, 102, 022809(2020).

    [53] A.Di Piazza, T. N.Wistisen. Numerical approach to the semiclassical method of radiation emission for arbitrary electron spin and photon polarization. Phys. Rev. D, 100, 116001(2019).

    [54] T. N.Wistisen. Numerical approach to the semiclassical method of pair production for arbitrary spins and photon polarization. Phys. Rev. D, 101, 076017(2020).

    [55] V. N.Baier, V. M.Strakhovenko, V. M.Katkov. Quantum radiation theory in inhomogeneous external fields. Nucl. Phys. B, 328, 387(1989).

    [56] C.Murphy, A.Ilderton, T.Blackburn, M.Marklund. Scaling laws for positron production in laser–electron-beam collisions. Phys. Rev. A, 96, 022128(2017).

    [57] R.Alkofer, O.Olugh, Z.-L.Li, B.-S.Xie. Pair production in differently polarized electric fields with frequency chirps. Phys. Rev. D, 99, 036003(2019).

    [58] L. H.Thomas. The motion of the spinning electron. Nature, 117, 514(1926).

    [59] L. H.Thomas. I. The kinematics of an electron with an axis. London, Edinburgh Dublin Philos. Mag. J. Sci., 3, 1-22(1927).

    [60] V.Bargmann, V. L.Telegdi, L.Michel. Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett., 2, 435(1959).

    [61] Z.-K.Dou, Y.-T.Zhao, J.-X.Li, Z.-F.Xu, T.-P.Yu, W.-M.Wang, K.Xue, Q.Zhao, F.Wan, J.-R.Ren. Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction. Matter Radiat. Extremes, 5, 054402(2020).

    [62] J.-X.Li, Y.-Y.Chen, Y.Wang, R.Shaisultanov, F.Wan, K. Z.Hatsagortsyan, R.-T.Guo, Z.-F.Xu. Stochasticity in radiative polarization of ultrarelativistic electrons in an ultrastrong laser pulse. Phys. Rev. Res., 2, 033483(2020).

    Ya-Nan Dai, Bai-Fei Shen, Jian-Xing Li, Rashid Shaisultanov, Karen Z. Hatsagortsyan, Christoph H. Keitel, Yue-Yue Chen. Photon polarization effects in polarized electron–positron pair production in a strong laser field[J]. Matter and Radiation at Extremes, 2022, 7(1): 014401
    Download Citation