• Laser & Optoelectronics Progress
  • Vol. 54, Issue 4, 40002 (2017)
Bi Weihong*, Ma Jingyun, Yang Kaili, Tian Pengfei, Wang Xiaoyu, and Li Caili
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.040002 Cite this Article Set citation alerts
    Bi Weihong, Ma Jingyun, Yang Kaili, Tian Pengfei, Wang Xiaoyu, Li Caili. Graphene-Based Optical Fiber and Its Applications[J]. Laser & Optoelectronics Progress, 2017, 54(4): 40002 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [2] Li Shaojuan, Gan Sheng, Mu Haoran, et al. Research progress in graphene use in photonic and optoelectronic devices[J]. New Carbon Materials, 2014, 29(5): 329-356.

    [3] Hu Tonghuan, Jiang Guobao, Chen Yu, et al. Passive harmonic mode-locking in Er-doped fiber laser based on mechanical exfoliated graphene saturable absorber[J]. Chinese J Lasers, 2015, 42(8): 0802013.

    [4] Ren Jun, Wu Sida, Cheng Zhaochen, et al. Mode-locked femtosecond erbium-doped fiber laser based on graphene oxide versus semiconductor saturable absorber mirror[J]. Chinese J Lasers, 2015, 42(6): 0602013.

    [5] Zhou F, Hao R, Jin X F, et al. A graphene-enhanced fiber-optic phase modulator with large linear dynamic range[J]. IEEE Photonics Technology Letters, 2014, 26(18): 1867-1870.

    [6] Kim J A, Hwang T, Dugasani S R, et al. Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications[J]. Sensors and Actuators B: Chemical, 2013, 184(4): 426-433.

    [7] Bao Q L, Zhang H, Wang B, et al. Broadband graphene polarizer[J]. Nature Photonics, 2011, 5(7): 411-415.

    [8] Bi Weihong, Wang Yuanyuan, Fu Guangwei, et al. Study on the electro-optic modulation properties of graphene-coated hollow optical fiber[J]. Acta Physica Sinica, 2016, 65(4): 047801.

    [9] Bi Weihong, Li Caili, Wang Xiaoyu, et al. Study on birefringence and electro-optic properties of graphene covered microfiber[J]. Acta Optica Sinica, 2016, 36(10): 1026013.

    [10] Avouris P. Graphene: Electronic and photonic properties and devices[J]. Nano Letters, 2010, 10(11): 4285-4294.

    [11] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9-10): 351-355.

    [12] Kuzmenko A B, Van H E, Carbone F, et al. Universal optical conductance of graphite[J]. Physical Review Letters, 2008, 100(11): 117401.

    [13] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308-1313.

    [14] Hanson G W. Dyadic Green′s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.

    [15] Falkovsky L A, Pershoguba S S. Optical far-infrared properties of graphene monolayer and multilayer[J]. Physical Review B, 2007, 76(15): 153410.

    [16] Bao Q L, Zhang H, Wang B, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed laser[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

    [17] Zhang Cheng, Luo Zhengqian, Wang Jinzhang, et al. Dual-wavelength mode-locked Yb-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field[J]. Chinese J Lasers, 2012, 39(6): 0602006.

    [18] Song Y W, Jang S Y, Han W S, et al. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction[J]. Applied Physics Letters, 2010, 96(5): 051122.

    [19] Lee E J, Choi S Y, Jeong H, et al. Active control of all-fiber graphene devices with electrical gating[J]. Nature Communications, 2015, 6: 6851.

    [20] Zapata J D, Steinberg D, Saito L A M, et al. Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation[J]. Scientific Reports, 2016, 6: 20644.

    [21] Luo Z Q, Wang J Z, Zhou M, et al. Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field[J]. Laser Physics Letters, 2012, 9(3): 229-233.

    [22] He X Y, Liu Z B, Wang D N, et al. Passively mode-locked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation[J]. Journal of Lightwave Technology, 2012, 30(7): 984-989.

    [23] Liu X M, Yang H R, Cui Y D, et al. Graphene-clad microfiber saturable absorber for ultrafast fiber lasers[J]. Scientific Reports, 2016, 6: 20624.

    [24] Liu Z B, He X Y, Wang D N. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution[J]. Optics Letters, 2011, 36(16): 3024-3026.

    [25] Chen T, Chen H F, Wang D N, et al. Graphene saturable absorber based on slightly tapered fiber with inner air-cavity[J]. Journal of Lightwave Technology, 2015, 33(11): 2332-2336.

    [26] Zhou F, Jin X F, Hao R, et al. A graphene-based all-fiber electro-absorption modulator[J]. Journal of Optics, 2016, 45(4): 337-342.

    [27] Li Wei. Micro/Nanofiber-based graphene ultrafast all-optical modulators[D]. Hangzhou: Zhejiang University, 2013: 2.

    [28] Liu Z B, Feng M, Jiang W S, et al. Broadband all-optical modulation using a graphene-covered-microfiber[J]. Laser Physics Letters, 2013, 10(6): 065901.

    [29] Zhang H J, Healy N, Shen L, et al. Enhanced all-optical modulation in a graphene-coated fiber with low insertion loss[J]. Scientific Reports, 2016, 6: 23512.

    [30] Li W, Chen B G, Meng C, et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 2014, 14(2): 955-959.

    [31] Xu F, Chen J H, Zheng B C, et al. Polarization-dependent all-optical modulator with ultra-high modulation depth based on a stereo graphene-microfiber structure[J]. Physics, 2015: arXiv.

    [32] Ubeid M F, Shabat M M. Analytical sensitivity and reflected power through a D-shape optical fiber sensor[J]. Opto-Electronics Review, 2014, 22(3): 191-195.

    [33] Ubeid M F, Shabat M M. Numerical investigation of a D-shape optical fiber sensor containing graphene[J]. Applied Physics A, 2015, 118(3): 1113-1118.

    [34] Fu H Y, Zhang S W, Chen H, et al. Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor[J]. IEEE Sensor Journal, 2015, 15(10): 5478-5482.

    [35] Patnaik A, Senthilnathan K, Jha R. Graphene-based conducting metal oxide coated D-shape optical fiber SPR sensor[J]. IEEE Photonics Technology Letters, 2015, 27(23): 2437-2440.

    [36] Dash J N, Jha R. Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance[J]. IEEE Photonics Technology Letters, 2014, 26(11): 1092-1095.

    [37] Dsah J N, Jha R. On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance[J]. Plasmonics, 2015, 10(5): 1123-1131.

    [38] Rifat A A, Mahdiraji G A, Ahmed R, et al. Copper-graphene-based photonic crystal fiber plasmonic biosensor[J]. IEEE Photonics Journal, 2016, 8(1): 4800408.

    [39] Bao Q L, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. ACS Nano, 2012, 6(5): 3677-3694.

    [40] Zhang H J, Healy N, Shen L, et al. Graphene-based fiber polarizer with PVB-enhanced light interaction[J]. Journal of Lightwave Technology, 2016, 34(15): 3563-3567.

    [41] Li W X, Yi L L, Zheng R, et al. Fabrication and application of a graphene polarizer with strong saturable absorption[J]. Photonics Research, 2016, 4(2): 41-44.

    [42] He X Y, Zhang X C, Zhang H, et al. Graphene covered on microfiber exhibiting polarization and polarization-dependent saturable absorption[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 55-61.

    [43] Guan C Y, Li S Q, Shen Y Z, et al. Graphene-coated surface core fiber polarizer[J]. Journal of Lightwave Technology, 2015, 33(2): 349-353.

    Bi Weihong, Ma Jingyun, Yang Kaili, Tian Pengfei, Wang Xiaoyu, Li Caili. Graphene-Based Optical Fiber and Its Applications[J]. Laser & Optoelectronics Progress, 2017, 54(4): 40002
    Download Citation