• Laser & Optoelectronics Progress
  • Vol. 58, Issue 7, 0714006 (2021)
Xiaofei Feng1, Rihong Han1、2、*, Yu Gao3, Jiangru Wu1, and Haibo Qi1、2
Author Affiliations
  • 1School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang , Hebei 050043, China
  • 2Hebei Key Laboratory of Traffic Engineering Materials, Shijiazhuang , Hebei 050043, China
  • 3Shandong Engineering & Technology Research Center for Modern Welding, School of Materials Science & Engineering, Shandong University, Jinan , Shandong 250014, China
  • show less
    DOI: 10.3788/LOP202158.0714006 Cite this Article Set citation alerts
    Xiaofei Feng, Rihong Han, Yu Gao, Jiangru Wu, Haibo Qi. Numerical Simulation for Gas-powder Coupled Transmission of Coaxial Powder-Feeding Laser Cladding[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0714006 Copy Citation Text show less
    References

    [1] Zhang S Y, Wang B B, Zheng K Q. A study on laser cladding of WC-TiN-SiC-Co hard alloy and their strengthening mechanism[J]. Acta Physica Sinica, 43, 678-682(1994).

    [2] Feng X T, Lei J B, Gu H et al. Effect of scanning speeds on electrochemical corrosion resistance of laser cladding TC4 alloy[J]. Chinese Physics B, 28, 026802(2019).

    [3] Liu J L, Yu H J, Chen C Z et al. Research and development status of laser cladding on magnesium alloys: a review[J]. Optics and Lasers in Engineering, 93, 195-210(2017).

    [4] Guo W, Li K K, Chai R X et al. Numerical simulation and experiment of dilution effect in laser cladding 304 stainless steel[J]. Laser & Optoelectronics Progress, 56, 051402(2019).

    [5] Wang X J, Yan Y L. Microstructure and properties of laser cladding 316L stainless steel coating via magnetic field assisted[J]. Laser & Optoelectronics Progress, 57, 231401(2020).

    [6] Ren Z H, Wu M P, Cui C et al. Effects of temperature field and CeO2/TiO2 on material phase transition in laser cladding[J]. Chinese Journal of Lasers, 46, 0802006(2019).

    [7] Wang J S, Shu L S. Laser cladding remanufacturing and repair of agricultural tractor spindle[J]. Laser & Optoelectronics Progress, 57, 071404(2020).

    [8] Wang T, Qiao W L, Wang N et al. Effect of scanning speed on microstructure and properties of laser cladding NiCoCrAlY coating[J]. Laser & Optoelectronics Progress, 57, 211403(2020).

    [9] Tamanna N, Crouch R, Naher S. Progress in numerical simulation of the laser cladding process[J]. Optics and Lasers in Engineering, 122, 151-163(2019).

    [10] Wirth F, Arpagaus S, Wegener K. Analysis of melt pool dynamics in laser cladding and direct metal deposition by automated high-speed camera image evaluation[J]. Additive Manufacturing, 21, 369-382(2018).

    [11] Chen Y, Lu F G, Zhang K et al. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling[J]. Journal of Alloys and Compounds, 670, 312-321(2016).

    [12] Kovalev O B, Zaitsev A V, Novichenko D et al. Theoretical and experimental investigation of gas flows, powder transport and heating in coaxial laser direct metal deposition (DMD) process[J]. Journal of Thermal Spray Technology, 20, 465-478(2011).

    [13] Bedenko D V, Kovalev O B, Smurov I et al. Numerical simulation of transport phenomena, formation the bead and thermal behavior in application to industrial DMD technology[J]. International Journal of Heat and Mass Transfer, 95, 902-912(2016).

    [14] Kovalev O B, Kovaleva I O, Smurov I Y. Numerical investigation of gas-disperse jet flows created by coaxial nozzles during the laser direct material deposition[J]. Journal of Materials Processing Technology, 249, 118-127(2017).

    [15] Kovalev O B, Bedenko D V, Zaitsev A V. Development and application of laser cladding modeling technique: from coaxial powder feeding to surface deposition and bead formation[J]. Applied Mathematical Modelling, 57, 339-359(2018).

    [16] Liu H, Hao J B, Yu G et al. A numerical study on metallic powder flow in coaxial laser cladding[J]. Journal of Applied Fluid Mechanics, 9, 2247-2256(2016).

    [17] Kovaleva I, Kovalev O, Zaitsev A et al. Numerical simulation and comparison of powder jet profiles for different types of coaxial nozzles in direct material deposition[J]. Physics Procedia, 41, 870-872(2013).

    [18] Smurov I, Doubenskaia M, Zaitsev A. Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation[J]. Surface and Coatings Technology, 220, 112-121(2013).

    [19] Dong G, Liu J C, Li Y Y. Numerical simulation of gas-powder flow in laser cladding with coaxial powder feeding[J]. High Power Laser and Particle Beams, 25, 1951-1955(2013).

    [20] Yang N, Yang X C. Numerical simulation of flow field of nozzle in laser cladding[J]. Chinese Journal of Lasers, 35, 452-455(2008).

    [21] Yang N, Yang X C. Model of interaction between metal powder particle and laser beam in laser cladding[J]. Acta Optica Sinica, 28, 1745-1750(2008).

    Xiaofei Feng, Rihong Han, Yu Gao, Jiangru Wu, Haibo Qi. Numerical Simulation for Gas-powder Coupled Transmission of Coaxial Powder-Feeding Laser Cladding[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0714006
    Download Citation