[1] Y. Xu, H. Liu, Z. Cheng, “Harnessing the power of radionuclides for optical imaging: Cerenkov luminescence imaging," J. Nucl.Med. 52, 2009–2018 (2011).
[2] P. A. Cerenkov, “Visible radiation produced by electrons moving in a medium with velocities exceeding that of light," Phys. Rev. 52, 378–379 (1937).
[3] A. Ruggiero, J. P. Holland, J. S. Lewis et al., “Cerenkov luminescence imaging of medical isotopes," J. Nucl. Med. 51, 1123–1130 (2010).
[4] R. Robertson, M. S. Germanos, C. Li et al., “Optical imaging of cerenkov light generation from positron-emitting radiotracers," Phys. Med. Biol. 54, N355–N365 (2009).
[5] X. Cao, X. Chen, F. Kang et al., “Performance evaluation of endoscopic cerenkov luminescence imaging system: In vitro and pseudotumor studies," Biomed. Opt. Express 5, 3660–3670 (2014).
[6] X. Cao, Y. Zhan, X. Cao et al., “Harnessing the power of cerenkov luminescence imaging for gastroenterology: Cerenkov luminescence endoscopy," Curr. Med. Imag. Rev. 13, 50–57 (2017).
[7] Z. Hu, J. Liang, W. Yang et al., “Experimental cerenkov luminescence tomography of the mouse model with spect imaging validation," Opt. Express 18, 24441–24450 (2010).
[8] C. Li, G. S. Mitchell, S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging," Opt. Lett. 35, 1109–1111 (2010).
[9] A. E. Spinelli, M. Ferdeghini, C. Cavedon et al., “First human cerenkography," J. Biomed. Opt. 18, 020502 (2013).
[10] D. L. J. Thorek, C. C. Riedl, J. Grimm, “Clinical cerenkov luminescence imaging of f-18-fdg," J. Nucl. Med. 55, 95–98 (2014).
[11] X. Cao, X. Chen, F. Kang et al., “Sensitivity improvement of cerenkov luminescence endoscope with terbium doped gd2o2s nanoparticles," Appl. Phys. Lett. 106, 213702 (2015).
[12] G. S. Mitchell, R. K. Gill, D. L. Boucher et al., “In vivo cerenkov luminescence imaging: A new tool for molecular imaging," Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci. 369, 4605–4619 (2011).
[13] X. Cao, X. Chen, F. Kang et al., “Intensity enhanced cerenkov luminescence imaging using terbiumdoped gd2o2s microparticles," ACS Appl. Mater. Interfaces 7, 11775–11782 (2015).
[14] X. Cao, Y. Li, Y. Zhan et al., “Removing noises induced by gamma radiation in cerenkov luminescence imaging using a temporal median filter," Biomed. Res. Int. 2016, 7948432–7948432 (2016).
[15] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York (1981).
[16] P. Wang, H. L. Wang, A modified FCM algorithm for MRI brain image segmentation, Int. Seminar Future BioMedical Information Engineering, 2008. FBIE'08, pp. 26–29, IEEE (2008).
[17] Y. A. Tolias, S. M. Panas, “Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions," IEEE Trans. Syst. Man Cybern. A, Syst. Humans 28, 359–369 (1998).
[18] M. Gong, L. Su, M. Jia et al., “Fuzzy clustering with a modified mrf energy function for change detection in synthetic aperture radar images," IEEE Trans. Fuzzy Syst. 22, 98–109 (2014).
[19] M. Krinidis, I. Pitas, “Color texture segmentation based on the modal energy of deformable surfaces," IEEE Trans. Image Process. 18, 1613–1622 (2009).
[20] S. Krinidis, V. Chatzis, “A robust fuzzy local information c-means clustering algorithm" IEEE Trans. Image Process. 19, 1328–1337 (2010).
[21] T. F. Chan, J. H. Shen, “Mathematical models for local nontexture inpaintings," SIAM J. Appl. Math. 62, 1019–1043 (2002).
[22] T. F. Chan, “Nontexture inpainting by curvaturedriven diffusions," J. Vis. Commun. Image Represent. 12, 436–449 (2001).
[23] S. H. Ren, X. L. Chen, H. L. Wang et al., “Molecular optical simulation environment (mose): A platform for the simulation of light propagation in turbid media," PLoS One 8, 11 (2013).
[24] K. Liu, Y. Lu, J. Tian et al., “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models," Opt. Express 18, 20988–21002 (2010).