• Photonics Research
  • Vol. 11, Issue 2, 173 (2023)
Yulong Cao1、2, Zhenghu Chang1, Qiang Wu1, Jingsheng Huang1, Laiyang Dang1, Ai Liu1, Yiyang Luo1, Ligang Huang1, Wei Huang1, Lei Gao1、3、*, and Tao Zhu1、4、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
  • 2Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
  • 3e-mail: gaolei@cqu.edu.cn
  • 4e-mail: zhutao@cqu.edu.cn
  • show less
    DOI: 10.1364/PRJ.478095 Cite this Article Set citation alerts
    Yulong Cao, Zhenghu Chang, Qiang Wu, Jingsheng Huang, Laiyang Dang, Ai Liu, Yiyang Luo, Ligang Huang, Wei Huang, Lei Gao, Tao Zhu. Self-synchronized temporal-spectral characterization system for revealing ultrafast fiber laser dynamics[J]. Photonics Research, 2023, 11(2): 173 Copy Citation Text show less
    References

    [1] K. Goda, B. Jalali. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics, 7, 102-112(2013).

    [2] X. Wei, B. Li, Y. Yu, C. Zhang, K. K. Tsia, K. K. Y. Wong. Unveiling multi-scale laser dynamics through time-stretch and time-lens spectroscopies. Opt. Express, 25, 29098-29120(2017).

    [3] C. Lei, B. Guo, Z. Cheng, K. Goda. Optical time-stretch imaging: principles and applications. Appl. Phys. Rev., 3, 011102(2016).

    [4] C. Xu, F. Wise. Recent advances in fibre lasers for nonlinear microscopy. Nat. Photonics, 7, 875-882(2013).

    [5] Y. Jiang, S. Karpf, B. Jalali. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nat. Photonics, 14, 14-18(2020).

    [6] B. Guo, J. Sun, Y. Lu, L. Jiang. Ultrafast dynamics observation during femtosecond laser-material interaction. Int. J. Extreme Manuf., 1, 032004(2019).

    [7] Y. Jia, S. Wang, F. Chen. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron. Adv., 3, 190042(2020).

    [8] G. Pu, L. Yi, L. Zhang, C. Luo, Z. Li, W. Hu. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis. Light Sci. Appl., 9, 13(2020).

    [9] J. W. Fleischer, M. Segev, N. K. Efremidis, D. N. Christodoulides. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature, 422, 147-150(2003).

    [10] M. Stratmann, T. Pagel, F. Mitschke. Experimental observation of temporal soliton molecules. Phys. Rev. Lett., 95, 143902(2005).

    [11] G. Herink, B. Jalali, C. Ropers, D. R. Solli. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat. Photonics, 10, 321-326(2016).

    [12] A. F. J. Runge, N. G. R. Broderick, M. Erkintalo. Observation of soliton explosions in a passively mode-locked fiber laser. Optica, 2, 36-39(2015).

    [13] H. Chen, M. Liu, J. Yao, S. Hu, J. He, A. Luo, W. Xu, Z. Luo. Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion. Opt. Express, 26, 2972-2982(2018).

    [14] Y. Cui, X. Liu. Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers. Photon. Res., 7, 423-430(2019).

    [15] G. Herink, F. Kurtz, B. Jalali, D. R. Solli, C. Ropers. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science, 356, 50-53(2017).

    [16] Z. Wang, K. Nithyanandan, A. Coillet, P. Tchofo-Dinda, P. Grelu. Optical soliton molecular complexes in a passively mode-locked fibre laser. Nat. Commun., 10, 830(2019).

    [17] Y. Luo, R. Xia, P. Shum, W. Ni, Y. Liu, H. Lam, Q. Sun, X. Tang, L. Zhao. Real-time dynamics of soliton triplets in fiber lasers. Photon. Res., 8, 884-891(2020).

    [18] X. Liu, M. Pang. Revealing the buildup dynamics of harmonic mode-locking states in ultrafast lasers. Laser Photon. Rev., 13, 180033(2019).

    [19] J. Peng, S. Boscolo, Z. Zhao, H. Zeng. Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv., 5, 1110(2019).

    [20] I. Walmsley, C. Dorrer. Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photon., 1, 308-437(2009).

    [21] R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, D. J. Kane. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum., 68, 3277-3295(1997).

    [22] C. Iaconis, I. A. Walmsley. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett., 23, 792-794(1998).

    [23] R. Salem, M. A. Foster, A. L. Gaeta. Application of space–time duality to ultrahigh-speed optical signal processing. Adv. Opt. Photon., 5, 274-317(2013).

    [24] A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, B. Jalali. Time stretch and its applications. Nat. Photonics, 11, 341-351(2017).

    [25] B. Li, S. Wang, Y. Wei, S. Huang, K. K. Y. Wong. Temporal imaging for ultrafast spectral-temporal optical signal processing and characterization. IEEE J. Sel. Top. Quantum Electron., 27, 7600613(2021).

    [26] B. Kolner, M. Nazarathy. Temporal imaging with a time lens. Opt. Lett., 14, 630-632(1989).

    [27] M. Kauffman, A. Godil, B. Auld. Applications of time lens optical systems. Electron. Lett., 29, 268-269(1993).

    [28] R. Salem, M. Foster, A. Turner, D. F. Geraghty, M. Lipson, A. L. Gaeta. Optical time lens based on four-wave mixing on a silicon chip. Opt. Lett., 33, 1047-1049(2008).

    [29] T. Ng, F. Parmigiani, M. Ibsen, Z. Zhang, P. Petropoulos, D. J. Richardson. Compensation of linear distortions by using XPM with parabolic pulses as a time lens. IEEE Photon. Technol. Lett., 20, 1097-1099(2008).

    [30] A. Godil, B. Auld, D. Bloom. Picosecond time-lenses. IEEE J. Quantum Electron., 30, 827-837(1994).

    [31] J. Howe, J. Hansryd, C. Xu. Multiwavelength pulse generator using time-lens compression. Opt. Lett., 29, 1470-1472(2004).

    [32] M. Foster, R. Salem, D. Geraghty, A. C. Turner-Foster, M. Lipson, A. L. Gaeta. Silicon-chip-based ultrafast optical oscilloscope. Nature, 456, 81-84(2008).

    [33] B. Li, S. Lou. Time-frequency conversion, temporal filtering, and temporal imaging using graded-index time lenses. Opt. Lett., 37, 3981-3983(2012).

    [34] M. Narhi, B. Wetzel, C. Billet, S. Toenger, T. Sylvestre, J. Merolla, R. Morandotti, F. Dias, G. Genty, J. Dudley. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. Nat. Commun., 7, 13675(2016).

    [35] Y. Li, S. Huang, B. Li, H. Liu, J. Yang, A. Vinod, K. Wang, M. Yu, D. Kwong, H. Wang, K. Wong, C. Wong. Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs. Light Sci. Appl., 9, 1(2020).

    [36] B. Kolner. Space-time duality and the theory of temporal imaging. IEEE J. Quantum Electron., 30, 1951-1963(1994).

    [37] B. Li, S. Huang, Y. Li, C. Wong, K. Wong. Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics. Nat. Commun., 8, 1(2017).

    [38] B. Li, J. Kang, S. Wang, Y. Yu, P. Feng, K. Wong. Unveiling femtosecond rogue-wave structures in noise-like pulses by a stable and synchronized time magnifier. Opt. Lett., 44, 4351-4354(2019).

    [39] F. Kurtz, C. Ropers, G. Herink. Resonant excitation and all-optical switching of femtosecond soliton molecules. Nat. Photonics, 14, 9-13(2020).

    [40] W. He, M. Pang, D. Yeh, J. Huang, C. Menyuk, P. Russell. Formation of optical supramolecular structures in a fibre laser by tailoring long-range soliton interactions. Nat. Commun., 10, 5756(2019).

    [41] C. Zhang, J. Xu, P. Chui, K. Wong. Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation. Sci. Rep., 3, 2064(2013).

    [42] D. Skryabin, F. Luan, J. Knight, P. St.J. Russell. Soliton self-frequency shift cancellation in photonic crystal fibers. Science, 301, 1705-1708(2003).

    [43] J. Peng, H. Luo, L. Zhan. In-cavity soliton self-frequency shift ultrafast fiber lasers. Opt. Lett., 43, 5913-5916(2018).

    [44] N. Nishizawa, T. Goto. Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers. IEEE Photon. Technol. Lett., 11, 325-327(1999).

    [45] G. Agrawal. Nonlinear Fiber Optics, Fourth Edition & Applications of Nonlinear Fiber Optics(2010).

    [46] J. Huang, Y. Cao, J. Wang, A. Liu, Q. Wu, Z. Chang, Z. Li, Y. Luo, L. Gao, G. Yin, T. Zhu. Time-stretch-based multidimensional line-scan microscopy. Opt. Laser Eng., 160, 107197(2023).

    [47] X. Liu, Y. Cui. Revealing the behavior of soliton buildup in a mode-locked laser. Adv. Photon., 1, 016003(2019).

    [48] J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. Churkin, S. Turitsyn, H. Zeng. Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fiber lasers. Commun. Phys., 1, 20(2018).

    [49] J. Peng, H. Zeng. Build-up of dissipative optical soliton molecules via diverse soliton interactions. Laser Photon. Rev., 12, 1800009(2018).

    [50] X. Liu, X. Yao, Y. Cui. Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett., 121, 023905(2018).

    [51] Y. Zhou, Y. Ren, J. Shi, H. Mao, K. Wong. Buildup and dissociation dynamics of dissipative optical soliton molecules. Optica, 7, 965-972(2020).

    [52] P. Ryczkowski, M. Närhi, C. Billet, J. Meroll, G. Genty, J. Dudley. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat. Photonics, 12, 221-227(2018).

    Yulong Cao, Zhenghu Chang, Qiang Wu, Jingsheng Huang, Laiyang Dang, Ai Liu, Yiyang Luo, Ligang Huang, Wei Huang, Lei Gao, Tao Zhu. Self-synchronized temporal-spectral characterization system for revealing ultrafast fiber laser dynamics[J]. Photonics Research, 2023, 11(2): 173
    Download Citation