• Chinese Journal of Quantum Electronics
  • Vol. 36, Issue 2, 137 (2019)
Yu ZHOU1、2、*, Kun LIU1, and Xiaoming GAO1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2019.02.002 Cite this Article
    ZHOU Yu, LIU Kun, GAO Xiaoming. Detection of carbon dioxide based off-beam quartz enhanced photoacoustic spectroscopy[J]. Chinese Journal of Quantum Electronics, 2019, 36(2): 137 Copy Citation Text show less
    References

    [1] Bozoki Z, Pogany A, Szabo G. Photoacoustic instruments for practical applications: present, potentials, and future challenges [J]. Applied Spectroscopy Reviews, 2011, 4(1): 1-37.

    [2] Meyer P L, Sigrist M W. Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques [J]. Review of Scientific Instruments, 1990, 61(7): 1779-1807.

    [3] Narasimhan L R, Goodman W, Patel C. Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(8): 4617-4621.

    [7] Liu Kun, Yi Hongming, Kosterev A, et al. Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation [J]. Review of Scientific Instruments, 2010, 81(10): 103103.

    [11] Laurila T, Cattaneo H, Koskinen V, et al. Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection [J]. Optics Express, 2005, 13(7): 2453-2458.

    [12] Kosterev A A, Bakhirkin Y A, Curl R F, et al. Quartz-enhanced photoacoustic spectroscopy [J]. Optics Letters, 2002, 27(21): 1902-1904.

    [13] Liu Kun, Mei Jiaoxu, Zhang Weijun, et al. Multi-resonator photoacoustic spectroscopy [J]. Sensors and Actuators B: Chemical, 2017, 251: 632-636.

    [14] Yi Hongming, Liu Kun, Chen Weidong, et al. Application of broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy [J]. Optics Letters, 2011, 3(4): 481-483.

    [16] Yi Hongming, Chen Weidong, Vicet A, et al. T-shape microresonator-based quartz-enhanced photoacoustic spectroscopy for ambient methane monitoring using 3.38-μm antimonide-distributed feedback laser diode [J]. Applied Physics B, 2014, 11(2): 423-428.

    [19] Ma Y, Lewicki R, Razeghi M, et al. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL [J]. Optics. Express, 2013, 21(1): 1008-1019.

    [21] Nagi A, Persijn S T, Lindsay I D, et al. Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing [J]. Applied Physics B, 2007, 89(1): 123-128.

    [22] Borri S, Patimisco P, Sampaolo A, et al. Terahertz quartz enhanced photo-acoustic sensor [J]. Applied Physics Letters, 2013, 103(2): 021105.

    [23] Kosterev A A, Dong Lei, Thomazy D, et al. QEPAS for chemical analysis of multi-component gas mixtures [J]. Applied Physics B, 2010, 101: 649-659.

    [24] Kosterev A A, Tittel F K, Serebryakov D V, et al. Applications of quartz tuning forks in spectroscopic gas sensing [J]. Applied Spectroscopy Reviews, 2005, 7(4): 043105.

    [25] Liu Kun, Gao Xiaoming, Yi Hongming, et al. Off-beam quartz-enhanced photoacoustic spectroscopy [J]. Optics Letters, 2009, 34(10): 1594-1596.

    [26] Yi Hongming, Chen Weidong, Sun Shanwen, et al. T-shape microresonator-based high sensitivity quartz-enhanced photoacoustic spectroscopy sensor [J]. Optics Express, 2012, 20(8): 9187-9196.

    ZHOU Yu, LIU Kun, GAO Xiaoming. Detection of carbon dioxide based off-beam quartz enhanced photoacoustic spectroscopy[J]. Chinese Journal of Quantum Electronics, 2019, 36(2): 137
    Download Citation