• Acta Optica Sinica
  • Vol. 41, Issue 23, 2301003 (2021)
Xi Gong1, Zhanlong Chen1、2, Liang Wu1、2, Zhong Xie1、2、*, and Yongyang Xu1、2
Author Affiliations
  • 1School of Geography and Information Engineering, China University of Geosciences, Wuhan, Hubei 430074, China
  • 2National Engineering Research Center of Geographic Information System, Wuhan, Hubei 430074, China
  • show less
    DOI: 10.3788/AOS202141.2301003 Cite this Article Set citation alerts
    Xi Gong, Zhanlong Chen, Liang Wu, Zhong Xie, Yongyang Xu. Transfer Learning Based Mixture of Experts Classification Model for High-Resolution Remote Sensing Scene Classification[J]. Acta Optica Sinica, 2021, 41(23): 2301003 Copy Citation Text show less
    References

    [1] Liu F, Lu L X, Huang G W et al. Landform image classification based on discrete cosine transformation and deep network[J]. Acta Optica Sinica, 38, 0620001(2018).

    [2] Wu C, Wang H W, Yuan Y W et al. Image feature fusion based remote sensing scene zero-shot classification algorithm[J]. Acta Optica Sinica, 39, 0610002(2019).

    [3] Hauptmann A, Yan R, Lin W H et al. Can high-level concepts fill the semantic gap in video retrieval? A case study with broadcast news[J]. IEEE Transactions on Multimedia, 9, 958-966(2007).

    [4] He Q, Li Y, Song W et al. Multimodal remote sensing image classification with small sample size based on high-level feature fusion[J]. Laser & Optoelectronics Progress, 56, 111001(2019).

    [5] Gong X, Wu L, Xie Z et al. Classification method of high-resolution remote sensing scenes based on fusion of global and local deep features[J]. Acta Optica Sinica, 39, 0301002(2019).

    [6] Castelluccio M, Poggi G, Sansone C et al. -08-01)[2021-01-10]. https:∥arxiv., org/abs/1508, 00092(2015).

    [7] Hu F, Xia G S, Hu J W et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 7, 14680-14707(2015).

    [8] Yandex A B, Lempitsky V. Aggregating local deep features for image retrieval[C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile., 1269-1277(2015).

    [9] Zhang X N, Zhong X, Zhu R F et al. Scene classification of remote sensing images based on integrated convolutional neural networks[J]. Acta Optica Sinica, 38, 1128001(2018).

    [10] Zheng Z, Fang F, Liu Y Y et al. Joint multi-scale convolution neural network for scene classification of high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 47, 620-630(2018).

    [11] Cheng G, Yang C Y, Yao X W et al. When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 2811-2821(2018).

    [12] Simonyan K. -04-10)[2021-01-10]. https:∥arxiv., org/abs/1409, 1556(2015).

    [13] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 770-778(2016).

    [14] Lin M, Chen Q. -12-16)[2021-01-10]. https:∥arxiv., org/abs/1312, 4400(2013).

    [15] Gong X, Xie Z, Liu Y et al. Deep salient feature based anti-noise transfer network for scene classification of remote sensing imagery[J]. Remote Sensing, 10, 410(2018).

    [16] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. [C]∥Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, April 11-13, 2011, Lauderdale, Florida, USA. Cambridge: JMLR, 315-323(2011).

    [17] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. ∥Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science. Cham: Springer, 9905, 21-37(2016).

    [18] Abadi M, Barham P, Chen J M et al. TensorFlow: a system for large-scale machine learning. [C]∥Proceedings of the 12th Usenix Conference on Operating Systems Design and Implementation, November 2-4, 2016, Savannah, Georgia, USA. Berkeley: USENIX ASSociation, 265-283(2016).

    [19] Silberman N. -05-27)[2021-01-10]. https:∥github.com/tensorflow/models/blob/master/research/slim/README.md#pre-trained-models.(2020).

    [20] Breiman L. Random forests[J]. Machine Learning, 45, 5-32(2001). http://icb.oxfordjournals.org/external-ref?access_num=10.1023/A:1010933404324&link_type=DOI

    [21] Csurka G. Visual categorization with bags of keypoints. [C]∥Agapito, Bronstein M M, Rother C. Workshop on Statistical Learning in Computer Vision, September 6-7, 2014. Zurich, Switzerland: Springer, 1-22(2014).

    [22] LazebnikS, SchmidC, PonceJ. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[C]∥2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), June 17-22, 2006, New York, NY, USA. New York: IEEE Press, 2006: 2169- 2178.

    [23] Liu Y F, Zhong Y F, Qin Q Q. Scene classification based on multiscale convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 7109-7121(2018).

    [24] Wu H, Liu B Z, Su W H et al. Deep filter banks for land-use scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 13, 1895-1899(2016).

    [25] Laurens V D M, Hinton G. Visualizing Data using t-SNE[J]. Journal of Machine Learning Research, 9, 2579-2605(2008).

    Xi Gong, Zhanlong Chen, Liang Wu, Zhong Xie, Yongyang Xu. Transfer Learning Based Mixture of Experts Classification Model for High-Resolution Remote Sensing Scene Classification[J]. Acta Optica Sinica, 2021, 41(23): 2301003
    Download Citation