[2] AVID A, OCHOA J L, HUANG Y, et al. Revealing the role of ionic liquids in promoting fuel cell catalysts reactivity and durability[J]. Nat Commun, 2022, 13(1): 1-13.
[3] KODAMA K, NAGAI T, KUWAKI A, et al. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles[J]. Nat Nanotechnol, 2021, 16(2): 140-147.
[4] KAI J, SAITO R, TERABARU K, et al. Effect of temperature on the performance of polymer electrolyte membrane water electrolysis: numerical analysis of electrolysis voltage considering gas/liquid two-phase flow[J]. J Electrochem Soc, 2019, 166(4): F246-F254.
[8] ZHANG W Z, LIU M H, GU X, et al. Water electrolysis toward elevated temperature: Advances, challenges and frontiers[J]. Chem Rev, 2023, 123(11): 7119-7192.
[9] DIVISEK J, MALINOWSKI P. ChemInform abstract: ceramic diaphragms on NiO-basis for advanced alkaline water electrolysis[J]. Chemischer Informationsdienst, 1986, 17(39): 915-920.
[11] LEE J W, LEE C, LEE J H, et al. Cerium oxide-polysulfone composite separator for an advanced alkaline electrolyzer[J]. Polymers, 2020, 12(12): 2821.
[12] LI Y G, WU Z S, LU P F, et al. High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction[J]. Adv Sci (Weinh), 2020, 7(5): 1903089.
[13] CHEN Q M, GONG N, ZHU T R, et al. Surface phase engineering modulated iron-nickel nitrides/alloy nanospheres with tailored d-band center for efficient oxygen evolution reaction[J]. Small, 2022, 18(4): e2105696.
[14] XU X M, PAN Y L, ZHONG Y J, et al. From scheelite BaMoO4 to perovskite BaMoO3: enhanced electrocatalysis toward the hydrogen evolution in alkaline media[J]. Compos B Eng, 2020, 198: 108214.
[16] JI D W, LIU C H, YAO Y H, et al. Cerium substitution in LaCoO3 perovskite oxide as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions[J]. Nanoscale, 2021, 13(22): 9952-9959.
[17] OMARI E, OMARI M. Enhancing catalytic activity of NdFeO3 perovskite by tuning A-site cation deficiency for oxygen evolution reaction[J]. Int J Hydrog Energy, 2022, 47(32): 14542-14551.
[18] BERNT M, HARTIG-WEI A, TOVINI M F, et al. Current challenges in catalyst development for PEM water electrolyzers[J]. Chemie Ingenieur Tech, 2020, 92(1-2): 31-39.
[19] OH H S, NONG H N, REIER T, et al. Electrochemical catalyst-support effects and their stabilizing role for IrOx nanoparticle catalysts during the oxygen evolution reaction[J]. J Am Chem Soc, 2016, 138(38): 12552-12563.
[20] HAN B H, RISCH M, BELDEN S, et al. Screening oxide support materials for OER catalysts in acid[J]. J Electrochem Soc, 2018, 165(10): F813-F820.
[21] LIANG X, SHI L, LIU Y P, et al. Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions[J]. Angewandte Chemie, 2019, 131(23): 7713-7717.
[22] MIAO X B, ZHANG L F, WU L, et al. Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation[J]. Nat Commun, 2019, 10(1): 3809.
[23] SIRACUSANO S, BAGLIO V, NICOTERA I, et al. Sulfated titania as additive in Nafion membranes for water electrolysis applications[J]. Int J Hydrog Energy, 2017, 42(46): 27851-27858.
[24] KIM T, SIHN Y, YOON I H, et al. Monolayer hexagonal boron nitride nanosheets as proton-conductive gas barriers for polymer electrolyte membrane water electrolysis[J]. ACS Appl Nano Mater, 2021, 4(9): 9104-9112.
[25] SHYAM KUMAR C N, BAURI R, REDDY G S. Phase stability and conductivity of rare earth co-doped nanocrystalline zirconia electrolytes for solid oxide fuel cells[J]. J Alloys Compd, 2020, 833: 155100.
[26] KIM B J, FABBRI E, ABBOTT D F, et al. Functional role of Fe-doping in Co-based perovskite oxide catalysts for oxygen evolution reaction[J]. J Am Chem Soc, 2019, 141(13): 5231-5240.
[27] ZHAO Z, TANG S, LIU Z B, et al. Efficient and stable heterostructured air electrode for solid oxide steam electrolysis[J]. Int J Hydrog Energy, 2023, 48(15): 5764-5773.
[28] WAN L, XU Z A, WANG B G. Green preparation of highly alkali-resistant PTFE composite membranes for advanced alkaline water electrolysis[J]. Chem Eng J, 2021, 426: 131340.
[29] THANGAVEL P, LEE H, KONG T H, et al. Immobilizing low-cost metal nitrides in electrochemically reconstructed platinum group metal (PGM)-free oxy-(hydroxides) surface for exceptional OER kinetics in anion exchange membrane water electrolysis[J]. Adv Energy Mater, 2023, 13(6): 2203401.
[30] JIANG W L, FAID A Y, GOMES B F, et al. Composition-dependent morphology, structure, and catalytical performance of nickel-iron layered double hydroxide as highly-efficient and stable anode catalyst in anion exchange membrane water electrolysis[J]. Adv Funct Mater, 2022, 32(38): 2203520.
[31] THOMPSON S T, PAPAGEORGOPOULOS D. Platinum group metal-free catalysts boost cost competitiveness of fuel cell vehicles[J]. Nat Catal, 2019, 2(7): 558-561.
[32] OTT S, ORFANIDI A, SCHMIES H, et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells[J]. Nat Mater, 2020, 19(1): 77-85.
[33] HE C, SANKARASUBRAMANIAN S, MATANOVIC I, et al. Front cover: understanding the oxygen reduction reaction activity and oxidative stability of Pt supported on Nb-doped TiO2 (ChemSusChem 15/2019)[J]. ChemSusChem, 2019, 12(15): 3405.
[34] TANG H L, WANG S L, PAN M, et al. Porosity-graded micro-porous layers for polymer electrolyte membrane fuel cells[J]. J Power Sources, 2007, 166(1): 41-46.
[35] LI X B, PENG L F, ZHANG D, et al. The frequency of pulsed DC sputtering power introducing the graphitization and the durability improvement of amorphous carbon films for metallic bipolar plates in proton exchange membrane fuel cells[J]. J Power Sources, 2020, 466: 228346.
[36] CAI C, WAN Z H, RAO Y, et al. Water electrolysis plateau in voltage reversal process for proton exchange membrane fuel cells[J]. J Power Sources, 2020, 455: 227952.
[37] KNIGHTS S D, COLBOW K M, ST-PIERRE J, et al. Aging mechanisms and lifetime of PEFC and DMFC[J]. J Power Sources, 2004, 127(1-2): 127-134.
[38] IOROI T, YASUDA K. Highly reversal-tolerant anodes using Ti4O7-supported platinum with a very small amount of water-splitting catalyst[J]. J Power Sources, 2020, 450: 227656.
[39] HUANG G, LI Y Y, DU S Q, et al. Silica-facilitated proton transfer for high-temperature proton-exchange membrane fuel cells[J]. Sci China Chem, 2021, 64(12): 2203-2211.
[40] CHENG Y, ZHANG J Y, WU X, et al. A template-free method to synthesis high density iron single atoms anchored on carbon nanotubes for high temperature polymer electrolyte membrane fuel cells[J]. Nano Energy, 2021, 80: 105534.
[41] YAMAMOTO O, ARATI Y, TAKEDA Y, et al. Electrical conductivity of stabilized zirconia with ytterbia and scandia[J]. Solid State Ion, 1995, 79: 137-142.
[43] SINGH M, SINGH A K. Studies on structural, morphological, and electrical properties of Ga3+ and Cu2+ co-doped ceria ceramics as solid electrolyte for IT-SOFCs[J]. Int J Hydrog Energy, 2020, 45(44): 24014-24025.
[44] WANG J C, ZHAO K, ZHAO J S, et al. A NiMo-YSZ catalyst support layer for regenerable solid oxide fuel cells running on isooctane[J]. Appl Energy, 2022, 326: 119907.
[45] PARK S, VOHS J M, GORTE R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Nature, 2000, 404(6775): 265-267.
[46] LI J W, FU Z M, WEI B, et al. Tailoring tantalum doping into a perovskite ferrite to obtain a highly active and stable anode for solid oxide fuel cells[J]. J Mater Chem A, 2020, 8(36): 18778-18791.
[47] HE S C, YIN Y R, BI L, et al. A new Pr0.25Nd0.25Sr0.5MnO3-δ cathode for proton-conducting solid oxide fuel cells[J]. Ceram Int, 2022, 48(8): 11872-11878.
[48] ZHENG Z W, JING J M, LEI Z, et al. Performance and DRT analysis of infiltrated functional cathode based on the anode supported SOFCs with long-term stability[J]. Int J Hydrog Energy, 2022, 47(41): 18139-18147.
[49] ZHU W K, PEI Y B, DOUGLIN J C, et al. Multi-scale study on bifunctional Co/Fe-N-C cathode catalyst layers with high active site density for the oxygen reduction reaction[J]. Appl Catal B Environ, 2021, 299: 120656.
[50] ZHANG X L, HU S J, WANG Y H, et al. Plasma-assisted synthesis of metal nitrides for an efficient platinum-group-metal-free anion-exchange-membrane fuel cell[J]. Nano Lett, 2023, 23(1): 107-115.
[51] KHAN K, TAREEN A K, ASLAM M, et al. Novel two-dimensional carbon-chromium nitride-based composite as an electrocatalyst for oxygen reduction reaction[J]. Front Chem, 2019, 7: 738.
[52] WANG Y, YANG Y, JIA S F, et al. Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells[J]. Nat Commun, 2019, 10(1): 1506.
[53] LU Y X, WANG L Q, PREU K, et al. Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells[J]. J Power Sources, 2017, 372: 82-90.
[54] XIE F, GAO X Q, HAO J K, et al. Preparation and properties of amorphous TiO2 modified anion exchange membrane by impregnation-hydrolysis method[J]. React Funct Polym, 2019, 144: 104348.
[55] LU Y, PAN X T, LI N, et al. Improved performance of quaternized poly(arylene ether ketone)s/graphitic carbon nitride nanosheets composite anion exchange membrane for fuel cell applications[J]. Appl Surf Sci, 2020, 503: 144071.
[56] CHEN N J, LONG C, LI Y X, et al. Three-decker strategy based on multifunctional layered double hydroxide to realize high-performance hydroxide exchange membranes for fuel cell applications[J]. ACS Appl Mater Interfaces, 2018, 10(21): 18246-18256.