• Laser & Optoelectronics Progress
  • Vol. 57, Issue 6, 060003 (2020)
Feng Yang, Guohui Wei, Hui Cao*, Mengmeng Xing, Jing Liu, and Junzhong Zhang
Author Affiliations
  • School of Science and Technology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
  • show less
    DOI: 10.3788/LOP57.060003 Cite this Article Set citation alerts
    Feng Yang, Guohui Wei, Hui Cao, Mengmeng Xing, Jing Liu, Junzhong Zhang. Research Progress on Content-Based Medical Image Retrieval[J]. Laser & Optoelectronics Progress, 2020, 57(6): 060003 Copy Citation Text show less
    References

    [1] Smeulders A W M, Worring M, Santini S et al. Content-based image retrieval at the end of the early years[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1349-1380(2000). http://dl.acm.org/citation.cfm?id=357873

    [2] Liu Y, Zhang D S, Lu G J et al. A survey of content-based image retrieval with high-level semantics[J]. Pattern Recognition, 40, 262-282(2007).

    [3] Khan S, Yong S P. A comparison of deep learning and hand crafted features in medical image modality classification. [C]∥2016 3rd International Conference on Computer and Information Sciences (ICCOINS), August 15-17, 2016, Kuala Lumpur, Malaysia. New York: IEEE, 633-638(2016).

    [4] Bhattacharyya S, Bhaumik H, De S et al. Intelligent analysis of multimedia information[M]. Pennsylvania: ICI Global(2016).

    [5] Jain A K, Vailaya A. Image retrieval using color and shape[J]. Pattern Recognition, 29, 1233-1244(1996).

    [6] Manjunath B S, Ma W Y. Texture features for browsing and retrieval of image data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, 837-842(1996).

    [7] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 60, 91-110(2004). http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1023/B:VISI.0000029664.99615.94&rfr_id=trans/tp/2008/10/ttp2008101683.htm

    [8] Jegou H, Perronnin F, Douze M et al. Aggregating local image descriptors into compact codes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 1704-1716(2012).

    [9] Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 29, 51-59(1996).

    [10] Dalal N, Triggs B. Histograms of oriented gradients for human detection. [C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), June 20-25, 2005, San Diego, CA, USA. New York: IEEE, 8588935(2005).

    [11] Bay H. Tuytelaars T, van Gool L. SURF: speeded up robust features[M]. ∥Leonardis A, Bischof H, Pinz A. Computer vision-ECCV 2006. Lecture notes in computer science. Berlin, Heidelberg: Springer, 3951, 404-417(2006).

    [12] Ramamurthy B. Certain approaches on content based medical image retrieval CBMIR using visual features[D]. India: Anna University(2014).

    [13] Perronnin F, Sanchez J, Mensink T. Improving the fisher kernel for large-scale image classification[M]. ∥Daniilidis K, Maragos P, Paragios N. Computer vision-ECCV 2010. Lecture notes in computer science. Berlin, Heidelberg: Springer, 6314, 143-156(2010).

    [14] Qayyum A, Anwar S M, Awais M et al. Medical image retrieval using deep convolutional neural network[J]. Neurocomputing, 266, 8-20(2017).

    [15] Jegou H, Zisserman A. Triangulation embedding and democratic aggregation for image search. [C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 3310-3317(2014).

    [16] Babenko A, Slesarev A, Chigorin A et al. Neural codes for image retrieval[M]. ∥Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science. Cham: Springer, 8689, 584-599(2014).

    [17] Gong Y C, Wang L W, Guo R Q et al. Multi-scale orderless pooling of deep convolutional activation features[M]. ∥Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science. Cham: Springer, 8695, 392-407(2014).

    [18] Yandex A B, Lempitsky V. Aggregating local deep features for image retrieval. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 1269-1277(2015).

    [19] Tolias G, Sicre R. -02-24)[2019-08-01]. https:∥arxiv.xilesou., top/abs/1511, 05879(2016).

    [20] Kalantidis Y, Mellina C, Osindero S. Cross-dimensional weighting for aggregated deep convolutional features[M]. ∥Hua G, Jégou H. Computer vision-ECCV 2016 Workshops. Lecture notes in computer science. Cham: Springer, 9913, 685-701(2016).

    [21] Jimenez A, Alvarez J. Giro-I-nieto X. Class weighted convolutional features for visual instance search[C]∥Procedings of the British Machine Vision Conference 2017, September 2017, London, UK., 144(2017).

    [22] Xu J, Shi C, Qi C et al. Unsupervised part-based weighting aggregation of deep convolutional features for image retrieval. [C]∥Thirty-Second AAAI Conference on Artificial Intelligence, February 2-7, 2017, New Orleans: AAAI, 7436-7443(2018).

    [23] Fang X, Yao Y. Content-based Gist-Hash algorithm for ultrasonic image retrieval[J]. Journal of Computer Applications, 37, 74-76, 81(2017).

    [24] Li Y[J]. Parallel deep solutions for medical image retrieval Modern Computer, 2018, 65-67.

    [25] Wei C H, Li Y, Huang P J. Mammogram retrieval through machine learning within BI-RADS standards[J]. Journal of Biomedical Informatics, 44, 607-614(2011).

    [26] Filipczuk P, Fevens T, Krzyzak A et al. Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies[J]. IEEE Transactions on Medical Imaging, 32, 2169-2178(2013).

    [27] Avni U, Greenspan H, Konen E et al. X-ray categorization and retrieval on the organ and pathology level, using patch-based visual words[J]. IEEE Transactions on Medical Imaging, 30, 733-746(2011).

    [28] Wan Y N, Long F H, Qu L et al. BlastNeuron for automated comparison, retrieval and clustering of 3D neuron morphologies[J]. Neuroinformatics, 13, 487-499(2015).

    [29] Tommasi T, Orabona F, Caputo B. Discriminative cue integration for medical image annotation[J]. Pattern Recognition Letters, 29, 1996-2002(2008).

    [30] Song L, Liu X B, Ma L et al. Using HOG-LBP features and MMP learning to recognize imaging signs of lung lesions. [C]∥2012 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS), June 20-22, 2012, Rome, Italy. New York: IEEE, 12998116(2012).

    [31] Kumar A, Kim J, Cai W D et al. Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data[J]. Journal of Digital Imaging, 26, 1025-1039(2013).

    [32] Nweke H F, Teh Y W. Al-Garadi M A, et al. Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges[J]. Expert Systems With Applications, 105, 233-261(2018).

    [33] LeCun Y, Bottou L, Bengio Y et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 11, 2278-2324(1998).

    [34] Bar Y, Diamant I, Wolf L et al. Chest pathology detection using deep learning with non-medical training. [C]∥2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), April 16-19, 2015, Brooklyn, NY, USA. New York: IEEE, 294-297(2015).

    [35] Li W F. Classification of brain CT images based on deep learning[D]. Harbin: Harbin Engineering University, 356-358(2017).

    [37] Shin H C, Roth H R, Gao M C et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 35, 1285-1298(2016).

    [38] Wang X F, Lee F, Chen Q. Similarity-preserving hashing based on deep neural networks for large-scale image retrieval[J]. Journal of Visual Communication and Image Representation, 61, 260-271(2019).

    [39] Huang G, Liu X L. Automatic extraction and classification of road markings based on deep learning[J]. Chinese Journal of Lasers, 46, 0804002(2019).

    [40] Zhang H, Chen C H. Aurora sequence classification based on deep learning[J]. Laser & Optoelectronics Progress, 55, 111504(2018).

    [41] Gialampoukidis I, Vrochidis S, Kompatsiaris I. Fast visual vocabulary construction for image retrieval using skewed-split k-d trees[M]. ∥Tian Q, Sebe N, Qi G J, et al. MultiMedia modeling. Lecture notes in computer science. Cham: Springer, 9516, 466-477(2016).

    [42] Verma M, Raman B. Local tri-directional patterns: a new texture feature descriptor for image retrieval[J]. Digital Signal Processing, 51, 62-72(2016).

    [43] Wei G, Ma H, Qian W et al. Similarity measurement of lung masses for medical image retrieval using kernel based semisupervised distance metric[J]. Medical Physics, 43, 6259-6269(2016).

    [44] Coates A, Ng A, Lee H. An analysis of single-layer networks in unsupervised feature learning[C]∥Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, April 11-13, 2011, Fort Laude, 215-223(2011).

    [45] Bengio Y, Courville A C, deep learning: a review, new perspectives[J/OL]. -04-23)[2019-08-01]. https:∥arxiv.xilesou.top/abs/1206.5538v1.(2014).

    [46] Wang S Y, Kim M, Wu G R et al[M]. Scalable high performance image registration framework by unsupervised deep feature representations learning, 245-269(2017).

    [47] Brosch T, Tam R. Manifold learning of brain MRIs by deep learning[M]. ∥Mori K, Sakuma I, Sato Y, et al. Medical image computing and computer-assisted intervention-MICCAI 2013. Lecture notes in computer science. Berlin, Heidelberg: Springer, 8150, 633-640(2013).

    [48] Yang X L, Lin S Z, Lu X F et al. Multimodal image fusion based on generative adversarial networks[J]. Laser & Optoelectronics Progress, 56, 161004(2019).

    [49] Wu M L. Medical image retrieval based on semi-supervised learning[D]. Nanjing: Nanjing University of Science and Technology, 67-69(2015).

    [50] Bai W J, Oktay O, Sinclair M et al. Semi-supervised learning for network-based cardiac MR image segmentation[M]. ∥Descoteaux M, Maier-Hein L, Franz A, et al. Medical image computing and computer-assisted intervention-MICCAI 2017. Lecture notes in computer science. Cham: Springer, 10434, 253-260(2017).

    [51] Son L H, Tuan T M. A cooperative semi-supervised fuzzy clustering framework for dental X-ray image segmentation[J]. Expert Systems With Applications, 46, 380-393(2016).

    [52] Li Z D, Zhong Y, Zhang B Y et al. Massive face image retrieval based on depth feature clustering[J]. Journal of Harbin Institute of Technology, 50, 101-109(2018).

    [53] Xiang S M, Nie F P, Zhang C S. Learning a Mahalanobis distance metric for data clustering and classification[J]. Pattern Recognition, 41, 3600-3612(2008).

    [54] Wei G H, Qi S L, Qian W et al. Image retrieval algorithm of pulmonary nodules based on similarity measurement[J]. Journal of Northeastern University(Natural Science), 39, 1226-1231(2018).

    [55] Yu J, Tao D P, Li J et al. Semantic preserving distance metric learning and applications[J]. Information Sciences, 281, 674-686(2014).

    [56] Nister D, Stewenius H. Scalable recognition with a vocabulary tree. [C]∥2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), June 17-22, 2006, New York, NY, USA. New York: IEEE, 2161-2168(2006).

    [57] Jiang M L, Zhang S T, Li H S et al. Computer-aided diagnosis of mammographic masses using scalable image retrieval[J]. IEEE Transactions on Biomedical Engineering, 62, 783-792(2015).

    [58] Wang J J, Xiao J, Lin W Y et al. Discriminative and generative vocabulary tree: with application to vein image authentication and recognition[J]. Image and Vision Computing, 34, 51-62(2015).

    [59] Zhang X F, Yang L, Liu W et al. Mining histopathological images via composite hashing and online learning[M]. ∥Golland P, Hata N, Barillot C, et al. Medical image computing and computer-assisted intervention-MICCAI 2014. Lecture notes in computer science. Cham: Springer, 8674, 479-486(2014).

    [60] Liu J J, Zhang S T, Liu W et al. Scalable mammogram retrieval using Anchor Graph Hashing. [C]∥2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), April 29-May 2, 2014, Beijing, China. New York: IEEE, 898-901(2014).

    [61] Yu X, Zhang S T, Liu B et al. Large scale medical image search via unsupervised PCA hashing. [C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, June 23-28, 2013, Portland, OR, USA. New York: IEEE, 393-398(2013).

    [62] Jiang M L, Zhang S T, Li H S et al. Computer-aided diagnosis of mammographic masses using scalable image retrieval[J]. IEEE Transactions on Biomedical Engineering, 62, 783-792(2015).

    [63] Rui Y, Huang T. Optimizing learning in image retrieval. [C]∥Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), June 15-15, 2000, Hilton Head Island, SC, USA. New York: IEEE, 6651640(2000).

    [64] Shi X S, Sapkota M, Xing F Y et al. Pairwise based deep ranking hashing for histopathology image classification and retrieval[J]. Pattern Recognition, 81, 14-22(2018).

    [65] Holub A, Perona P. A discriminative framework for modelling object classes. [C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), June 20-25, 2005, San Diego, CA, USA. New York: IEEE, 8588926(2005).

    [66] Wu J X, Gao B B, Wei X S et al. Resource-constrained deep learning: challenges and practices[J]. Scientia Sinica(Informationis), 48, 501-510(2018).

    [67] Wu H, Lu H, Ma S. The role of sample distribution in relevance feedback for content based image retrieval. [C]∥IEEE International Conference on Multimedia and Expo, August 26-29, 2002, Lausanne, Switzerland. New York: IEEE, 225-228(2002).

    [68] Zhou Z H, Chen K J, Dai H B. Enhancing relevance feedback in image retrieval using unlabeled data[J]. ACM Transactions on Information Systems, 24, 219-244(2006).

    [69] Zucker J D, Chevaleyre Y. Solving multiple-instance and multiple-part learning problems with decision trees and decision rules. Application to the mutagenesis problem. [C]∥Proceedings of the 14th Canadian Conference on Artificial Intelligence, Lecture Notes in Artificial Intelligence, June 7-9, 2001, Ottawa, Canada.[S.l.: s.n.], 204-214(2000).

    [70] Greiner R, Su X Y, Shen B et al. Structural extension to logistic regression: discriminative parameter learning of belief net classifiers[J]. Machine Learning, 59, 297-322(2005).

    [71] Shyu C R, Brodley C E, Kak A C et al. ASSERT: a physician-in-the-loop content-based retrieval system for HRCT image databases[J]. Computer Vision and Image Understanding, 75, 111-132(1999).

    [72] Tzelepi M, Tefas A. Relevance feedback in deep convolutional neural networks for content based image retrieval. [C]∥Proceedings of the 9th Hellenic Conference on Artificial Intelligence - SETN '16, May 18-20, 2016, Thessaloniki, Greece. New York: ACM, 27(2016).

    [73] Gyires-Tóth B P, Osváth M, Papp D et al. Deep learning for plant classification and content-based image retrieval[J]. Cybernetics and Information Technologies, 19, 88-100(2019).

    [74] Qian Y, Gao X, Loomes M et al. Content-based retrieval of 3D medical images. [C]∥The Third International Conference on eHealth, Telemedicine, and Social Medicine (eTELEMED 2011).[S.l.: s.n.], 7-12(2011).

    [75] Cai W, Feng D, Fulton R. Content-based retrieval of dynamic PET functional images[J]. IEEE Transactions on Information Technology in Biomedicine, 4, 152-158(2000).

    [76] Huang X D, Sun L, Liu S L. A retrieval method of relevance feedback images based on discriminative extreme learning[J]. Journal of Xi'an Jiaotong University, 50, 96-102(2016).

    [77] Yu F, Li Y X, Wei B et al. Interactive differential evolution for user-oriented image retrieval system[J]. Soft Computing, 20, 449-463(2016).

    [78] Kahn C E Jr, Thao C. GoldMiner: a radiology image search engine[J]. American Journal of Roentgenology, 188, 1475-1478(2007).

    [79] Kalpathy-Cramer J, Demner-Fushman D et al. Evaluating performance of biomedical image retrieval systems: an overview of the medical image retrieval task at ImageCLEF 2004-2013[J]. Computerized Medical Imaging and Graphics, 39, 55-61(2015).

    [80] Lim J H, Chevallet J P. VisMed: a visual vocabulary approach for medical image indexing and retrieval[M]. ∥Lee G G, Yamada A, Meng H, et al. Information retrieval technology. Lecture notes in computer science. Berlin, Heidelberg: Springer, 3689, 84-96(2005).

    [81] Müller H, Lovis C. -10-01)[2019-08-01]. https:∥www.researchgate.net/publication/228730403_The_medGIFT_project_on_medical_image_retrieval.(2005).

    [82] Mourão A, Martins F, Magalhães J. Multimodal medical information retrieval with unsupervised rank fusion[J]. Computerized Medical Imaging and Graphics, 39, 35-45(2015).

    [83] Schaer R, Markonis D et al. Comparing fusion techniques for the ImageCLEF 2013 medical case retrieval task[J]. Computerized Medical Imaging and Graphics, 39, 46-54(2015).

    Feng Yang, Guohui Wei, Hui Cao, Mengmeng Xing, Jing Liu, Junzhong Zhang. Research Progress on Content-Based Medical Image Retrieval[J]. Laser & Optoelectronics Progress, 2020, 57(6): 060003
    Download Citation