• Chinese Journal of Lasers
  • Vol. 47, Issue 12, 1202004 (2020)
Xu Hanzong1、2、3, Ge Honghao1、2、3、*, Wang Jiefeng1、2、3, Zhang Qunli1、2、3, Yao Jianhua1、2、3, and Volodymyr S. Kovalenko1、4
Author Affiliations
  • 1Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 2Zhejiang Provincial Collaboration Innovation Center of High-End Laser Manufacturing Equipment, Hangzhou, Zhejiang 310023, China
  • 3School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 4Laser Technology Research Institute, National Technical University of Ukraine, Kiev 0 3056, Ukraine
  • show less
    DOI: 10.3788/CJL202047.1202004 Cite this Article Set citation alerts
    Xu Hanzong, Ge Honghao, Wang Jiefeng, Zhang Qunli, Yao Jianhua, Volodymyr S. Kovalenko. Effects of Process Parameters upon Chromium Element Distribution in Laser-Cladded 316L Stainless Steel[J]. Chinese Journal of Lasers, 2020, 47(12): 1202004 Copy Citation Text show less
    References

    [1] Yuan Q L, Feng X D, Cao J J et al. Research progress in laser cladding technology[J]. Materials Review, 24, 112-116(2010).

    [2] Yao J H[M]. Laser surface modification technology and application(2012).

    [3] Song J L, Li Y T, Deng Q L et al. Research progress of laser cladding forming technology[J]. Journal of Mechanical Engineering, 46, 29-39(2010).

    [4] He S S, Yu Z S, Zhang P L et al. Effect of sub-micron TiC/B4C particle on microstructures and properties of laser cladded Stellite coatings[J]. Chinese Journal of Lasers, 46, 0302010(2019).

    [5] Chen J, Zhang F Y, Tan H et al. Alloying mechanics in moving melt pool during laser solid forming from blended elemental powders[J]. Chinese Journal of Lasers, 37, 2154-2159(2010).

    [6] Sun M, Wu G L, Wang Y et al. Ceramic coating prepared by laser cladding and composite micro-arc oxidation on 316L surface[J]. Surface Technology, 48, 24-32(2019).

    [7] Yang J X, Chang W Q, Miao X H et al. Influence of Mn, Mo, Ti additions on microstructure and magnetic properties of WC-FeNiCr composite coatings[J]. Chinese Journal of Lasers, 42, 1006001(2015).

    [8] Ji X, Sun Z G, Chang L L et al. Microstructure evolution behavior in laser melting deposition of Ti6Al4V/Inconel625 gradient high-temperature resistant coating[J]. Chinese Journal of Lasers, 46, 1102008(2019).

    [9] Barr C, da Sun S, Easton M et al. Influence of macrosegregation on solidification cracking in laser clad ultra-high strength steels[J]. Surface and Coatings Technology, 340, 126-136(2018).

    [10] Liu J, Li J, Cheng X et al. Effect of dilution and macrosegregation on corrosion resistance of laser clad AerMet100 steel coating on 300M steel substrate[J]. Surface and Coatings Technology, 325, 352-359(2017).

    [11] Liu J, Li J, Cheng X et al. Microstructures and tensile properties of laser cladded AerMet100 steel coating on 300M steel[J]. Journal of Materials Science & Technology, 34, 643-652(2018).

    [12] Wu X Y, Xu J X, Gao X S et al. Numerical simulation of thermal process and fluid flow field in laser-MIG hybrid weld pools[J]. Chinese Journal of Lasers, 46, 0902003(2019).

    [13] Aucott L, Dong H, Mirihanage W et al. Revealing internal flow behaviour in arc welding and additive manufacturing of metals[J]. Nature Communications, 9, 5414(2018). http://www.nature.com/articles/s41467-018-07900-9

    [14] Ge H H, Ren F L, Li J et al. Four-phase dendritic model for the prediction of macrosegregation, shrinkage cavity, and porosity in a 55-ton ingot[J]. Metallurgical and Materials Transactions A, 48, 1139-1150(2017).

    [15] Li J, Wu M, Hao J et al. Simulation of channel segregation using a two-phase columnar solidification model-Part I: model description and verification[J]. Computational Materials Science, 55, 407-418(2012).

    [16] Wu M, Fjeld A, Ludwig A. Modelling mixed columnar-equiaxed solidification with melt convection and grain sedimentation-Part I: model description[J]. Computational Materials Science, 50, 32-42(2010).

    [17] Chen Z, Li X F, Zuo D W et al. Effects of process parameters on temperature field of Al/Ti coating by laser cladding on 7050 aluminum alloy based on numerical simulation[J]. Journal of Materials Science and Engineering, 33, 86-92, 116(2015).

    [18] Lei J B, Yang X C, Chen J et al. Measurement of surface temperature field distribution in molten pool of laser cladding[J]. Chinese Journal of Lasers, 35, 1605-1608(2008).

    [19] Guo W, Zhang Y P, Chai R X. Numerical simulation and experimental study of single-track laser cladding of 304 stainless steels[J]. Laser & Optoelectronics Progress, 56, 091401(2019).

    [20] Ren Z H, Wu M P, Tang Y H et al. Numerical simulation and experimental research of laser cladding based on thermo-mechanical coupling[J]. Laser & Optoelectronics Progress, 56, 051404(2019).

    [21] Wang Y F, Sun X, Song Z J et al. Interface microstructures of broad-band laser cladding amorphous alloy coating[J]. Surface Technology, 47, 61-65(2018).

    [22] Xing B, Chang B H, Du D. Effects of process parameters on morphology of laser deposited layer on IC10 directionally solidified superalloy[J]. Transactions of the China Welding Institution, 36, 88-92(2015).

    [23] Liu F C, Ren H, Wang X G et al. Dendritic segregation of Nb modified GH4169 superalloy fabricated by laser additive manufacturing[J]. Surface Technology, 48, 123-131(2019).

    [24] Fatoba O S, Akinlabi E T, Akinlab S A et al. Characterization of laser additive manufactured Al-Si coating on titanium alloy[J]. Materials Today: Proceedings, 18, 4675-4682(2019).

    [25] Yang X C, Zheng T X, Zhang N K et al[J]. Study on the convective mass transfer in laser cladding of FeCrSiB alloy Acta Metallurgica Sinica, 1992, 86-90.

    Xu Hanzong, Ge Honghao, Wang Jiefeng, Zhang Qunli, Yao Jianhua, Volodymyr S. Kovalenko. Effects of Process Parameters upon Chromium Element Distribution in Laser-Cladded 316L Stainless Steel[J]. Chinese Journal of Lasers, 2020, 47(12): 1202004
    Download Citation