• Chinese Journal of Lasers
  • Vol. 47, Issue 12, 1202004 (2020)
Xu Hanzong1、2、3, Ge Honghao1、2、3、*, Wang Jiefeng1、2、3, Zhang Qunli1、2、3, Yao Jianhua1、2、3, and Volodymyr S. Kovalenko1、4
Author Affiliations
  • 1Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 2Zhejiang Provincial Collaboration Innovation Center of High-End Laser Manufacturing Equipment, Hangzhou, Zhejiang 310023, China
  • 3School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 4Laser Technology Research Institute, National Technical University of Ukraine, Kiev 0 3056, Ukraine
  • show less
    DOI: 10.3788/CJL202047.1202004 Cite this Article Set citation alerts
    Xu Hanzong, Ge Honghao, Wang Jiefeng, Zhang Qunli, Yao Jianhua, Volodymyr S. Kovalenko. Effects of Process Parameters upon Chromium Element Distribution in Laser-Cladded 316L Stainless Steel[J]. Chinese Journal of Lasers, 2020, 47(12): 1202004 Copy Citation Text show less
    Boundary condition and grid of laser cladding
    Fig. 1. Boundary condition and grid of laser cladding
    Computational domain evolution model
    Fig. 2. Computational domain evolution model
    Temperature distribution cloud diagram at different time. (a) t=0.1 s; (b) t=0.2 s; (c) t=0.3 s; (d) t=0.4 s; (e) t=1.2 s; (f) t=2.0 s
    Fig. 3. Temperature distribution cloud diagram at different time. (a) t=0.1 s; (b) t=0.2 s; (c) t=0.3 s; (d) t=0.4 s; (e) t=1.2 s; (f) t=2.0 s
    Volume fraction of solid phase and flow field at different time. (a) t=0.4 s; (b) t=1.2 s; (c) t=2.0 s
    Fig. 4. Volume fraction of solid phase and flow field at different time. (a) t=0.4 s; (b) t=1.2 s; (c) t=2.0 s
    Chromium concentration distribution at different time. (a) t=0.4 s; (b) t=1.2 s; (c) t=2.0 s
    Fig. 5. Chromium concentration distribution at different time. (a) t=0.4 s; (b) t=1.2 s; (c) t=2.0 s
    Comparison between experiment and simulation. (a) Magnified image of area containing selected points in x direction; (b) metallographic image of cladding layer; (c) magnified image of area containing selected points in y direction; (d) simulation of chromium element distribution
    Fig. 6. Comparison between experiment and simulation. (a) Magnified image of area containing selected points in x direction; (b) metallographic image of cladding layer; (c) magnified image of area containing selected points in y direction; (d) simulation of chromium element distribution
    Comparison between experimental and simulation concentration in y direction
    Fig. 7. Comparison between experimental and simulation concentration in y direction
    Comparison between experimental and simulation concentration in x direction
    Fig. 8. Comparison between experimental and simulation concentration in x direction
    Orthogonal simulation results of average concentration of chromium in laser cladding layer
    Fig. 9. Orthogonal simulation results of average concentration of chromium in laser cladding layer
    Chromium element distribution cloud diagram
    Fig. 10. Chromium element distribution cloud diagram
    Comparison of chromium element uniformity at different process parameters
    Fig. 11. Comparison of chromium element uniformity at different process parameters
    Simulation results at 1.2 s. (a) Temperature field; (b) volume fraction of solid phase and flow field; (c) chromium element distribution and flow field
    Fig. 12. Simulation results at 1.2 s. (a) Temperature field; (b) volume fraction of solid phase and flow field; (c) chromium element distribution and flow field
    Flow diagram of molten pool at 1.2 s
    Fig. 13. Flow diagram of molten pool at 1.2 s
    MaterialMass fraction of element /%
    CSiMnCrNiMoFe
    45 steel0.450.20.6---Bal.
    316L stainless steel0.020.551.5516.010.02.08Bal.
    Table 1. Chemical composition of 45 steel and 316L stainless steel
    ParameterContent
    Initial mass fraction of chromium c0 /%16.0
    Melting point Tf /K1815.15
    Density ρ /(kg·m-3)8000
    Specific heat cp /(J·kg-1·K-1)500
    Thermal conductivity of liquidkl /(W·m-1·K-1)209.2
    Thermal conductivity of solidks /(W·m-1·K-1)19.2
    Latent heat Δhf /(J·kg-1)250000
    Viscosity μl /(Pa·s)0.0042
    Liquidus slope m /(K·%-1)-80.45
    Table 2. Material property parameters used in calculation
    LevelFactor
    P /Wv /(mm·s-1)R /(g·min-1)
    1120046.8
    21300610.0
    31400813.9
    415001017.5
    Table 3. Factor level design table
    No.P /Wv /(mm·s-1)R /(g·min-1)cave /%
    1120046.85.65
    21200610.06.99
    31200813.99.29
    412001017.510.31
    51300410.08.41
    6130066.85.59
    71300817.511.30
    813001013.98.25
    91400413.99.33
    101400617.510.74
    11140086.83.93
    1214001010.07.33
    131500417.57.07
    141500613.98.80
    151500810.05.25
    161500106.84.00
    Table 4. Orthogonal simulation results
    LevelFactor
    P /Wv /(mm·s-1)R /(g·min-1)
    k18.067.624.79
    k28.398.037.00
    k37.87.448.92
    k46.37.479.86
    R2.110.595.06
    Table 5. Range analysis
    Xu Hanzong, Ge Honghao, Wang Jiefeng, Zhang Qunli, Yao Jianhua, Volodymyr S. Kovalenko. Effects of Process Parameters upon Chromium Element Distribution in Laser-Cladded 316L Stainless Steel[J]. Chinese Journal of Lasers, 2020, 47(12): 1202004
    Download Citation