• Laser & Optoelectronics Progress
  • Vol. 59, Issue 13, 1330003 (2022)
Min Zhang1、2、*, Jian Fang1、2, Yong Wang1、2, Wenxiong Mo1、2, Fangzhou Hao1、2, Fan Yang1、2, and Xiang Lin1、2
Author Affiliations
  • 1Guangdong Power Grid Co., Ltd., Guangzhou Power Supply Bureau, Guangzhou 510620, Guangdong , China
  • 2Key Laboratory of Medium-Voltage and Low-Voltage Electric Equipment Inspection and Testing of China Southern Power Grid, Guangzhou 510620, Guangdong , China
  • show less
    DOI: 10.3788/LOP202259.1330003 Cite this Article Set citation alerts
    Min Zhang, Jian Fang, Yong Wang, Wenxiong Mo, Fangzhou Hao, Fan Yang, Xiang Lin. Research on Tunable Diode Laser Absorption Spectroscopy Background Signal Drift Correction[J]. Laser & Optoelectronics Progress, 2022, 59(13): 1330003 Copy Citation Text show less
    References

    [1] Wang Z H, Fu P F, Chao X. Laser absorption sensing systems: challenges, modeling, and design optimization[J]. Applied Sciences, 9, 2723(2019).

    [2] Cassidy D T, Reid J. Atmospheric pressure monitoring of trace gases using tunable diode lasers[J]. Applied Optics, 21, 1185-1190(1982).

    [3] Werle P W, Mazzinghi P, D’Amato F et al. Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60, 1685-1705(2004).

    [4] Yuan S, Kan R F, He Y B et al. Laser temperature compensation used in tunable diode-laser absorption spectroscopy[J]. Chinese Journal of Lasers, 40, 0515002(2013).

    [5] Chen H, Ju Y, Han L et al. Effects of temperature of laser shell on background signals for trace gas detection in TDLAS[J]. Spectroscopy and Spectral Analysis, 38, 1670-1674(2018).

    [6] Werle P W, Lechner S. Recent findings and approaches for the suppression of fluctuations and background drifts in tunable diode laser spectroscopy[J]. Proceedings of SPIE, 2834, 68-78(1996).

    [7] Ruxton K, Chakraborty A L, Johnstone W et al. Tunable diode laser spectroscopy with wavelength modulation: elimination of residual amplitude modulation in a phasor decomposition approach[J]. Sensors and Actuators B: Chemical, 150, 367-375(2010).

    [8] Chakraborty A L, Ruxton K, Johnstone W. Influence of the wavelength-dependence of fiber couplers on the background signal in wavelength modulation spectroscopy with RAM-nulling[J]. Optics Express, 18, 267-280(2010).

    [9] Pang T, Xia H, Wu B et al. Oxygen concentration detection system based on TDLAS and online elimination of background noise[J]. Journal of Optoelectronics·Laser, 26, 575-580(2015).

    [10] Zhao Y, Zhao X H, Wang Z et al. A new method for eliminating background signal drift to improve the detection precision in continuous harmonic detection[J]. Spectroscopy and Spectral Analysis, 35, 3224-3229(2015).

    [11] Zhang R, Zhao X H, Hu Y J et al. Background elimination method based on harmonic detection in no absorption spectral region[J]. Acta Optica Sinica, 33, 0430006(2013).

    [12] Zou L C, Huang J, Li Z H et al. Research on correction method of background signal drift in mid-infrared harmonic detection[J]. Spectroscopy and Spectral Analysis, 41, 408-413(2021).

    [13] Zhou X, Jeffries J B, Hanson R K. Development of a fast temperature sensor for combustion gases using a single tunable diode laser[J]. Applied Physics B, 81, 711-722(2005).

    [14] Philippe L C, Hanson R K. Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows[J]. Applied Optics, 32, 6090-6103(1993).

    [15] Cai J, Zhang M H, Zhu Y T et al. Model of freight vehicle energy consumption based on Pearson correlation coefficient[J]. Journal of Transportation Systems Engineering and Information Technology, 18, 241-246(2018).

    Min Zhang, Jian Fang, Yong Wang, Wenxiong Mo, Fangzhou Hao, Fan Yang, Xiang Lin. Research on Tunable Diode Laser Absorption Spectroscopy Background Signal Drift Correction[J]. Laser & Optoelectronics Progress, 2022, 59(13): 1330003
    Download Citation