• Chinese Journal of Quantum Electronics
  • Vol. 25, Issue 6, 649 (2008)
Kun REN1、*, Zhi-fang FENG2, and Xiao-bin REN3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    REN Kun, FENG Zhi-fang, REN Xiao-bin. Tunable photonic band gap crystals[J]. Chinese Journal of Quantum Electronics, 2008, 25(6): 649 Copy Citation Text show less
    References

    [3] Figotin A,Godin Y A,Vitebsky I. Two-dimensional tunable photonic crystals [J].Phys. Rev. B,1998,57(5):2841-2848.

    [4] Joannopoulos J D,Meade R D,Winn J N. Photonic Crystals: Molding the Flow of Light [M].Princeton: Princeton University Press,1995.

    [5] Busch K,John S. Photonic band gap formation in certain self-organizing systems [J].Phys. Rev. E,1998,58(3):3896-3908.

    [6] Yoshino K,Kawagishi Y,Ozaki,M,et al. Mechanical tuning of the optical properties of plastic opal as a photonic crystal [J].Jpn. J. Appl. Phys.,1999,38(7A): L786-L788.

    [7] Khokhar A Z,Rue R M De La,Ren K,et al. Permanent tuning of the opal stop-band with the application of uniaxial pressure [J].J. Opt. A,2007,9: 446-450.

    [8] Kim S,Gapalan V. Strain-tunable photonic band gap crystals [J].Appl. Phys. Lett.,2001,78(20): 3015-3017.

    [9] Golosovsky M,Saado Y,Davidov D. Self-assembly of floating magnetic particles into ordered structures: a promising route for the fabrication of tunable photonic band gap materials [J].Appl. Phys. Lett.,1999,75(26):4168-4170.

    [10] Golosovsky M,Neve-Oz Y,Davidav D. Magnetic-field-tunable photonic stop band in a three-dimensional array of conducting spheres [J].Phys. Rev. B,2005,71(19): 195105.

    [11] Xu X,Friedman G,Humfeld K D. Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals [J].Chem. Mater.,2002,14(3): 1249-1256.

    [12] Weissman J M,Sunkara H B,Tse A S,et al. Thermally switchable periodicities and diffraction from mesoscopically ordered materials [J].Science,1996,274: 959-963.

    [13] Holtz J H,Asher S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials [J].Nature,1997,389: 829-832.

    [14] Lee K,Asher S A. Photonic crystal chemical sensors: pH and ionic strength [J].J. Am. Chem. Soc.,2000,122(39): 9534-9537.

    [15] Gu Z Z,Fujishima A,Sato O. Photochemically tunable colloidal crystals [J].J. Am. Chem. Soc.,2000,122:12387-12388.

    [16] Busch K,John S. Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum [J].Phys.Rev. Lett.,1999,83(5): 967-970.

    [17] Yoshino K,Satoh S,Shimoda Y,et al. Temperature tuning of the stop band in transmission spectra of liquidcrystal infiltrated synthetic opal as tunable photonic crystal [J].Appl. Phys. Lett.,1999,75(7): 932-934.

    [18] Mertens G,Roder T,Schweins R,et al. Shift of the photonic band gap in two photonic crystal/liquid crystal composites [J].Appl. Phys. Lett.,2002,80(11): 1885-1887.

    [19] Leonard S W,Mondia J P,van Driel H M,et al. Tunable two-dimensional photonic crystals using liquid-crystal infiltration [J].Phys. Rev. B,2000,61(4):R2389-R2392.

    [20] Mertens G,Wehrspohn R B,et al. Tunable defect mode in a three-dimensional photonic crystal [J].Appl. Phys.Lett.,2005,87(24): 241108.

    [21] Schuller Ch,Klopf F,Reithmaier J P,et al. Tunable photonic crystals fabricated in Ⅲ-V semiconductor slab waveguides using infiltrated liquid crystals [J].Appl. Phys. Lett.,2003,82(17): 2767-2769.

    [22] Shimoda Y,Ozaki M,Yoshino K. Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal [J].Appl. Phys. Lett.,2001,79(22): 3627-3629

    [23] Ozaki M,Shimoda Y,Kasano M,et al. Electric field tuning of the stop band in a liquid-crystal-infiltrated polymer inverse opal [J].Adv. Mater.,2002,14(7): 514-518.

    [24] Chen C Y,Tsai T R,Pan C L,et al. Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals [J].Appl. Phys. Lett.,2003,83(22): 4497-4499.

    [25] Kubo S,Gu Z Z,Takahashi K,et al. Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition [J].J. Am. Chem. Soc.,2002,124(37): 10950-10951.

    [26] Kubo S,Gu Z Z,Takahashi K,et al. Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure [J].J. Am. Chem. Soc.,2004,126(26): 8314-8319.

    [27] Kubo S,Gu Z Z,Takahashi K,et al. Control of the optical properties of liquid crystal-infiltrated inverse opal structures using photo irradiation and/or an electric Field [J].Chem. Mater.,2005,17(9): 2298-2309.

    [28] Kee C S,Lim H,et al. Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals [J].Phys. Rev. B,2001,64(8): 085114.

    [29] McPhail D,Straub M,Gu M. Electrical tuning of three-dimensional photonic crystals,using polymer dispersed liquid crystals [J].Appl. Phys. Lett.,2005,86(5): 051103.

    [30] Kang D,Maclennan J E,Clark N A,et al. Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: Effect of liquid-crystal alignment [J].Phys. ReV. Lett.,2001,86(18): 4052-4055.

    [31] Maune B,Lon ar M,Witzens J,et al. Liquid crystal electric tuning of a photonic crystal laser [J].Appl. Phys.Lett.,2004,85(3): 360-362.

    [32] Weiss S M,Ouyang H,Zhang J,et al. Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals [J].Opt. Express,2005,13(4): 1090-1097.

    [33] Tolmachev V A,Perova T S,Grudinkin S A,et al. Electrotunable in-plane one-dimensional photonic structure based on silicon and liquid crystal [J].Appl. Phys. Lett.,2007,90(1): 011908.

    [34] Graugnard E,Dunham S N,King J S,et al. Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal [J].Appl. Phys. Lett.,2007,91(11): 111101.

    [35] Roussey M,Bernal M,Courjal N,et al. Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons [J].Appl. Phys. Lett.,2006,89(24): 241110.

    [36] Li B,Zhou J,Li L,et al. Ferroelectric inverse opals with electrically tunable photonic band gap [J].Appl. Phys.Lett.,2005,83(23): 4704-4706.

    [37] Ren K,Li Z Y,Ren X B,et al. Tunable negative refraction by electro-optical control in two-dimensional photonic crystal [J].Appl. Phy. A,2007,87(2): 181-185.

    [38] Takeda H,Yoshino K. Tunable photonic band gaps in two-dimensional photonic crystals by temporal modulation based on the Pockels effect [J].Phys. Rev. E,2004,69(1): 016605.

    [39] Ahlheim M,Barzoukas M,Bedworth P V,et al. Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient [J].Science,1996,271(5247): 335-337.

    [40] Kim T D,Kang J W,Luo J. Ultralarge and thermally stable electro-optic activities from supramolecular selfassembled molecular glasses [J].J. Am. Chem. Soc.,2007,129(3): 488-489.

    [41] Schmidt M,Eich M,Huebner U,et al. Electro-optically tunable photonic crystals [J].Appl. Phys. Lett.,2005,87(12): 121110.

    [42] Gan H,Zhang H,DeRose C T,et al. Low drive voltage Fabry-Pérot étalon device tunable filters using poled hybrid sol-gel materials [J].Appl. Phys. Lett.,2006,89(4): 041127.

    [43] Kee C S,Kim J E,Park H Y,et al. Two-dimensional tunable agnetic photonic crystals [J].Phys. Rev. B,2000,(61): 15523-15525.

    [44] Halevi P,Mendieta F R. Tunable photonic crystals with semiconducting constituents [J].Phys. Rev. Lett.,2000,(85): 1875-1878.

    [45] Kushwaha M S,Rouhani B D. Band-gap engineering in two-dimensional periodic photonic crystals [J].J. Appl.Phys.,2000,(88): 2877-2884.

    [46] Kee C S,Lim H. Tunable complete photonic band gaps of two-dimensional photonic crystals with intrinsic semiconductor rods [J].Phys. Rev.. B,2001,(64): 121103.

    [47] Lan S,Nishikawa S,Wada O. Levering deep photonic band gaps in photonic crystal impurity bands [J].Appl.Phys. Lett.,2001,(78): 2101-2104.

    [48] Ha Y K,Kim J E,Park H Y,et al. Tunable three-dimensional photonic crystals using semiconductors with varying free-carrier densities [J].Phys. Rev. B,2002,(66): 075109.

    [49] Raymond Ooi C H,Yeung T C Au,et al. Photonic band gap in a superconductor-dielectric superlattice [J].Phys.Rev. B,2001,61(9): 5920-5923.

    [50] Chen Y B,Zhang C,Zhu Y Y,et al. Tunable photonic crystals with superconductor constituents [J].Mater.Lett.,2002,55(1-2): 12-16.

    [51] Takeda H,Yoshino K. Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors [J].Phys. Rev. B,2003,67(24): 245109.

    [52] Pei T H,Huang Y. T. A temperature modulation photonic crystal Mach-Zehnder interferometer composed of copper oxide high-temperature superconductor [J].J. Appl. Phys.,2007,101(8): 084502.

    [53] Gu Z Z,Hayami S,Meng Q B,et al. Control of photonic band structure by molecular aggregates [J].J. Am.Chem. Soc.,2000,122(43): 10730-10731.

    [54] Gu Z Z,lyoda T,Fujishima A,et al. Photo-reversible regulation of optical stop bands [J].Adv. Mater.,2001,13(17): 1295-1298.

    [55] Astratov V N,Adawl A M,Skolnick M S,et al. Opal photonic crystals infiltrated with chalcogenide glass [J].Appl. Phys. Lett.,2001,78(26): 4094-4097.

    [56] Hong J C,Park J H,Chun C,et al. Photoinduced tuning of optical stop bands in azopolymer based inverse opal photonic crystals [J].Adv. Funct. Mater.,2007,17: 2462-2469.

    [57] Li J,Huang W,Wang Z,et al. A reversibly tunable colloidal photonic crystal via the infiltrated solvent liquidsolid phase transition [J].Colloids and Surfaces A,2007,293(1-3): 130-134.

    [58] Yoshino K,Satoh S,Shimoda Y,et al. Tunable optical stop band and reflection peak in synthetic opal infiltrated with liquid crystal and conducting polymer as photonic crystal [J].J. Appl. Phys.,1999,(38): L961-L963.

    [59] Leonard S W,van Drel H M,Schilling J,et al. Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection [J].Phys. Rev. B,2002,66(16): 161102.

    REN Kun, FENG Zhi-fang, REN Xiao-bin. Tunable photonic band gap crystals[J]. Chinese Journal of Quantum Electronics, 2008, 25(6): 649
    Download Citation