• Photonics Insights
  • Vol. 2, Issue 3, R07 (2023)
Dongdong Zhang1, Yushan Zeng1, Ye Tian1、*, and Ruxin Li1、2、*
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
  • 2School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
  • show less
    DOI: 10.3788/PI.2023.R07 Cite this Article Set citation alerts
    Dongdong Zhang, Yushan Zeng, Ye Tian, Ruxin Li. Coherent free-electron light sources[J]. Photonics Insights, 2023, 2(3): R07 Copy Citation Text show less
    References

    [1] I. E. Tamm. General characteristics of Vavilov-Cherenkov radiation. Science, 131, 206(1960).

    [2] G. A. Mourou, T. Tajima, S. V. Bulanov. Optics in the relativistic regime. Rev. Mod. Phys., 78, 309(2006).

    [3] S. J. Smith, E. M. Purcell. Visible light from localized surface charges moving across a grating. Phys. Rev., 92, 1069(1953).

    [4] T. Ypsilantis, J. Seguinot. Theory of ring imaging Cherenkov counters. Nucl. Instrum. Methods Phys. Res., 343, 30(1994).

    [5] E. Ciarrocchi, N. Belcari. Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences. EJNMMI Phys., 4, 14(2017).

    [6] G. L. Carr et al. High-power terahertz radiation from relativistic electrons. Nature, 420, 153(2002).

    [7] J. M. Byrd et al. Observation of broadband self-amplified spontaneous coherent terahertz synchrotron radiation in a storage ring. Phys. Rev. Lett., 89, 224801(2002).

    [8] F. Sannibale et al. A model describing stable coherent synchrotron radiation in storage rings. Phys. Rev. Lett., 93, 094801(2004).

    [9] M. Arbel et al. Superradiant and stimulated superradiant emission in a prebunched beam free-electron maser. Phys. Rev. Lett., 86, 2561(2001).

    [10] T. Watanabe et al. Experimental characterization of superradiance in a single-pass high-gain laser-seeded free-electron laser amplifier. Phys. Rev. Lett., 98, 034802(2007).

    [11] A. Gover, P. Sprangle. A unified theory of magnetic bremsstrahlung, electrostatic bremsstrahlung, Compton-Raman scattering, and Cerenkov-Smith-Purcell free-electron lasers. IEEE J. Quantum Electron., 17, 1196(1981).

    [12] W. B. Cheston. Compton scattering. Phys. Rev., 95, 247(1954).

    [13] G. Sarri et al. Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering. Phys. Rev. Lett., 113, 224801(2014).

    [14] W. Yan et al. High-order multiphoton Thomson scattering. Nat. Photonics, 11, 514(2017).

    [15] S. M. Wiggins et al. Self-amplification of coherent spontaneous emission in a Cherenkov free-electron maser. Phys. Rev. Lett., 84, 2393(2000).

    [16] Y. Adiv et al. Observation of 2D Cherenkov radiation. Phys. Rev. X, 13, 011002(2023).

    [17] P. A. Cherenkov. Visible emission of clean liquids by action of γ radiation. Dokl. Akad. Nauk SSSR, 2, 451(1934).

    [18] I. M. Frank, I. Tamm. Coherent visible radiation of fast electrons passing through matter. Phys.-Usp, 93, 388(1937).

    [19] Y. Shibata et al. Diagnostics of an electron beam of a linear accelerator using coherent transition radiation. Phys. Rev. E, 50, 1479(1994).

    [20] B. W. J. Mcneil, N. R. Thompson. X-ray free-electron lasers. Nat. Photonics, 4, 814(2010).

    [21] G. N. Kulipanov. Ginzburg’s invention of undulators and their role in modern synchrotron radiation sources and free electron lasers. Phys.-Usp, 50, 368(2007).

    [22] J. M. J. Madey. Stimulated emission of Bremsstrahlung in a periodic magnetic field. J. Appl. Phys., 42, 1906(2003).

    [23] D. A. G. Deacon et al. First operation of a free-electron laser. Phys. Rev. Lett., 38, 892(1977).

    [24] Y. Tian et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation. Nat. Photonics, 11, 242(2017).

    [25] A. Pizzi et al. Graphene metamaterials for intense, tunable, and compact extreme ultraviolet and X-ray sources. Adv. Sci., 7, 1901609(2020).

    [26] N. Rivera et al. Light emission based on nanophotonic vacuum forces. Nat. Phys., 15, 1284(2019).

    [27] Y. Zeng et al. Experimental study on laser-driven electron collimation along wire targets. Phys. Plasmas, 26, 012701(2019).

    [28] M. Shentcis et al. Tunable free-electron X-ray radiation from van der Waals materials. Nat. Photonics, 14, 686(2020).

    [29] G. Pitruzzello. Flatbands boost light emission. Nat. Photonics, 17, 215(2023).

    [30] N. Rivera, I. Kaminer. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys., 2, 538(2020).

    [31] I. Kimel, L. R. Elias. Coherent radiation reaction in free-electron sources. Phys. Rev. Lett., 75, 4210(1995).

    [32] A. Frisk Kockum et al. Ultrastrong coupling between light and matter. Nat. Rev. Phys., 1, 19(2019).

    [33] J. Bloch et al. Strongly correlated electron–photon systems. Nature, 606, 41(2022).

    [34] A. Karnieli et al. The coherence of light is fundamentally tied to the quantum coherence of the emitting particle. Sci. Adv., 7, eabf8096(2021).

    [35] T. H. Maiman. Stimulated optical radiation in ruby. Nature, 187, 493(1960).

    [36] D. Zhang et al. Coherent surface plasmon polariton amplification via free-electron pumping. Nature, 611, 55(2022).

    [37] R. Yu, A. Konečná, F. J. G. de Abajo. Inelastic scattering of electron beams by nonreciprocal nanostructures. Phys. Rev. Lett., 127, 157404(2021).

    [38] B. Barwick, D. J. Flannigan, A. H. Zewail. Photon-induced near-field electron microscopy. Nature, 462, 902(2009).

    [39] W. Cai et al. Efficient orbital angular momentum transfer between plasmons and free electrons. Phys. Rev. B, 98, 045424(2018).

    [40] G. M. Vanacore et al. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat. Mater., 18, 573(2019).

    [41] L. Schächter. Introduction. Beam-Wave Interaction in Periodic and Quasi-Periodic Structures, 1(2011).

    [42] L. Schächter. Models of beam–wave interaction in slow-wave structures. Beam-Wave Interaction in Periodic and Quasi-Periodic Structures, 169(2011).

    [43] J. D. Jackson, R. F. Fox. Classical Electrodynamics, 3rd ed.. Am. J. Phys., 67, 841(1999).

    [44] J. D. Jackson. Classical Electrodynamics(1998).

    [45] S. Corde et al. Femtosecond X rays from laser-plasma accelerators. Rev. Mod. Phys., 85, 1(2013).

    [46] P. A. Cherenkov. Visible light from clear liquids under the action of gamma radiation. Dokl. Akad. Nauk SSSR, 2, 451(1934).

    [47] I. Frank, I. Tamm. Coherent visible radiation of fast electrons passing through matter. Selected Papers, 29(1991).

    [48] K. Nakamura. Hyper-kamiokande—a next generation water Cherenkov detector. Int. J. Mod. Phys. A, 18, 4053(2003).

    [49] N. Horiuchi. Cherenkov detector. Nat. Photonics, 12, 443(2018).

    [50] I. Adam et al. The DIRC particle identification system for the BaBar experiment. Nucl. Instrum. Methods Phys. Res., 538, 281(2005).

    [51] G. Chang, L.-J. Chen, F. X. Kärtner. Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation. Opt. Lett., 35, 2361(2010).

    [52] D. V. Skryabin et al. Soliton self-frequency shift cancellation in photonic crystal fibers. Science, 301, 1705(2003).

    [53] X. B. Zhang et al. Enhanced violet Cherenkov radiation generation in GeO2-doped photonic crystal fiber. Appl. Phys. B, 111, 273(2013).

    [54] T. M. Shaffer, E. C. Pratt, J. Grimm. Utilizing the power of Cerenkov light with nanotechnology. Nat. Nanotechnol., 12, 106(2017).

    [55] V. L. Ginzburg. Transition radiation and transition scattering. Phys. Scripta, T2A, 182(1982).

    [56] W. P. E. M. Op ‘t Root et al. Single-cycle surface plasmon polaritons on a bare metal wire excited by relativistic electrons. Nat. Commun., 7, 13769(2016).

    [57] S. A. Maier et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett., 97, 176805(2006).

    [58] K. Wang, D. M. Mittleman. Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range. Phys. Rev. Lett., 96, 157401(2006).

    [59] S. P. Cramer. Synchrotron radiation fundamentals. X-Ray Spectroscopy with Synchrotron Radiation(2020).

    [60] P. L. Hartman. Early experimental work on synchrotron radiation. Synchrotron Radiat. News, 1, 28(1988).

    [61] H. L. Andrews et al. Superradiant emission of Smith-Purcell radiation. Phys. Rev., 8, 110702(2005).

    [62] Y. Ye et al. Deep-ultraviolet Smith–Purcell radiation. Optica, 6, 592(2019).

    [63] S. Huang et al. Enhanced versatility of table-top X-rays from van der Waals structures. Adv. Sci., 9, 2105401(2022).

    [64] X. Lin et al. Controlling Cherenkov angles with resonance transition radiation. Nat. Phys., 14, 816(2018).

    [65] X. Lin et al. A Brewster route to Cherenkov detectors. Nat. Commun., 12, 5554(2021).

    [66] J. Breuer, P. Hommelhoff. Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Phys. Rev. Lett., 111, 134803(2013).

    [67] H. L. Andrews et al. Observation of THz evanescent waves in a Smith-Purcell free-electron laser. Phys. Rev. Spec. Top. Accel. Beams, 12, 080703(2009).

    [68] D. Y. Sergeeva et al. Smith-Purcell radiation from periodic beams. Opt. Express, 25, 26310(2017).

    [69] S. E. Korbly et al. Observation of frequency-locked coherent terahertz Smith-Purcell radiation. Phys. Rev. Lett., 94, 054803(2005).

    [70] D. Y. Sergeeva, A. A. Tishchenko, M. N. Strikhanov. Conical diffraction effect in optical and X-ray Smith-Purcell radiation. Phys. Rev. Spec. Top. Accel. Beams, 18, 052801(2015).

    [71] N. Yamamoto, F. Javier García de Abajo, V. Myroshnychenko. Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy. Phys. Rev. B, 91, 125144(2015).

    [72] M. J. Moran. X-ray generation by the Smith-Purcell effect. Phys. Rev. Lett., 69, 2523(1992).

    [73] Z. Gan et al. High-fidelity and clean nanotransfer lithography using structure-embedded and electrostatic-adhesive carriers. Microsyst. Nanoeng., 9, 8(2023).

    [74] N. Quack et al. Integrated silicon photonic MEMS. Microsyst. Nanoeng., 9, 27(2023).

    [75] Q. Huang et al. Realization of wafer-scale nanogratings with sub-50 nm period through vacancy epitaxy. Nat. Commun., 10, 2437(2019).

    [76] B. Radha et al. Metal hierarchical patterning by direct nanoimprint lithography. Sci. Rep., 3, 1078(2013).

    [77] J. R. M. Saavedra, D. Castells-Graells, F. J. G. de Abajo. Smith-Purcell radiation emission in aperiodic arrays. Phys. Rev. B, 94, 035418(2016).

    [78] H. Ishizuka et al. Smith–Purcell experiment utilizing a field-emitter array cathode, measurements of radiation. Nucl. Instrum. Methods Phys. Res., 475, 593(2001).

    [79] C. Roques-Carmes et al. Towards integrated tunable all-silicon free-electron light sources. Nat. Commun., 10, 3176(2019).

    [80] S. Yamaguti et al. Photonic crystals versus diffraction gratings in Smith-Purcell radiation. Phys. Rev. B, 66, 195202(2002).

    [81] V. G. Baryshevsky et al. Coherent bremsstrahlung and parametric X-ray radiation from nonrelativistic electrons in a crystal. Tech. Phys. Lett., 32, 392(2006).

    [82] V. G. Baryshevsky, I. D. Feranchuk. Parametric X-rays from ultrarelativistic electrons in a crystal, theory and possibilities of practical utilization. J. Phys. France, 44, 913(1983).

    [83] H. Überall. High-energy interference effect of bremsstrahlung and pair production in crystals. Phys. Rev., 103, 1055(1956).

    [84] L. J. Wong, I. Kaminer. Prospects in X-ray science emerging from quantum optics and nanomaterials. Appl. Phys. Lett., 119, 130502(2021).

    [85] J. M. J. Madey, H. A. Schwettman, W. M. Fairbank. A free electron laser. IEEE Trans. Nucl. Sci., 20, 980(1973).

    [86] J. Yan et al. Self-amplification of coherent energy modulation in seeded free-electron lasers. Phys. Rev. Lett., 126, 084801(2021).

    [87] N. S. Mirian et al. Generation and measurement of intense few-femtosecond superradiant extreme-ultraviolet free-electron laser pulses. Nat. Photonics, 15, 523(2021).

    [88] E. Allaria et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics, 6, 699(2012).

    [89] Z. T. Zhao et al. First lasing of an echo-enabled harmonic generation free-electron laser. Nat. Photonics, 6, 360(2012).

    [90] P. Rebernik Ribič et al. Coherent soft X-ray pulses from an echo-enabled harmonic generation free-electron laser. Nat. Photonics, 13, 555(2019).

    [91] H. Deng, C. Feng. Using off-resonance laser modulation for beam-energy-spread cooling in generation of short-wavelength radiation. Phys. Rev. Lett., 111, 084801(2013).

    [92] C. Feng et al. Phase-merging enhanced harmonic generation free-electron laser. New J. Phys., 16, 043021(2014).

    [93] J. A. Clarke. The Science and Technology of Undulators and Wigglers(2004).

    [94] T. Tajima, J. M. Dawson. Laser electron accelerator. Phys. Rev. Lett., 43, 267(1979).

    [95] W. Wang et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature, 595, 516(2021).

    [96] W. Decking et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photonics, 14, 391(2020).

    [97] C. Pellegrini, A. Marinelli, S. Reiche. The physics of X-ray free-electron lasers. Rev. Mod. Phys., 88, 015006(2016).

    [98] C. Kim et al. Review of technical achievements in PAL-XFEL. AAPPS Bulletin, 32, 15(2022).

    [99] I. A. Andriyash et al. An ultracompact X-ray source based on a laser-plasma undulator. Nat. Commun., 5, 4736(2014).

    [100] L. J. Wong et al. Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photonics, 10, 46(2016).

    [101] A. Pizzi et al. Graphene metamaterials for intense, tunable, and compact extreme ultraviolet and X-ray sources. Adv. Sci., 7, 1901609(2020).

    [102] G. Rosolen et al. Metasurface-based multi-harmonic free-electron light source. Light. Sci. Appl., 7, 64(2018).

    [103] S. P. D. Mangles et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature, 431, 535(2004).

    [104] C. G. R. Geddes et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature, 431, 538(2004).

    [105] J. Faure et al. A laser–plasma accelerator producing monoenergetic electron beams. Nature, 431, 541(2004).

    [106] G. R. Plateau et al. Low-emittance electron bunches from a laser-plasma accelerator measured using single-shot X-ray spectroscopy. Phys. Rev. Lett., 109, 064802(2012).

    [107] O. Lundh et al. Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator. Nat. Phys., 7, 219(2011).

    [108] J. P. Couperus et al. Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator. Nat. Commun., 8, 487(2017).

    [109] P. W. Hatfield et al. The data-driven future of high-energy-density physics. Nature, 593, 351(2021).

    [110] S. Jalas et al. Bayesian optimization of a laser-plasma accelerator. Phys. Rev. Lett., 126, 104801(2021).

    [111] A. R. Maier et al. Decoding sources of energy variability in a laser-plasma accelerator. Phys. Rev. X, 10, 031039(2020).

    [112] Z. Huang, Y. Ding, C. B. Schroeder. Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. Phys. Rev. Lett., 109, 204801(2012).

    [113] J. van Tilborg et al. Active plasma lensing for relativistic laser-plasma-accelerated electron beams. Phys. Rev. Lett., 115, 184802(2015).

    [114] R. Pompili et al. Free-electron lasing with compact beam-driven plasma wakefield accelerator. Nature, 605, 659(2022).

    [115] M. Ferrario et al. SPARC_LAB present and future. Nucl. Instrum. Methods Phys. Res. B, 309, 183(2013).

    [116] L.-H. Yu et al. High-gain harmonic-generation free-electron laser. Science, 289, 932(2000).

    [117] D. Xiang, G. Stupakov. Echo-enabled harmonic generation free electron laser. Phys. Rev. Spec. Top. Accel. Beams, 12, 030702(2009).

    [118] M. Labat et al. Seeded free-electron laser driven by a compact laser plasma accelerator. Nat. Photonics, 17, 150(2023).

    [119] A. F. Habib et al. Attosecond-angstrom free-electron-laser towards the cold beam limit. Nat. Commun., 14, 1054(2023).

    [120] E. Gschwendtner, P. Muggli. Plasma wakefield accelerators. Nat. Rev. Phys., 1, 246(2019).

    [121] R. D’arcy et al. Recovery time of a plasma-wakefield accelerator. Nature, 603, 58(2022).

    [122] R. W. Assmann et al. EuPRAXIA conceptual design report. Eur. Phys. J. Spec. Top., 229, 3675(2020).

    [123] Y. Meng et al. Photonic van der Waals integration from 2D materials to 3D nanomembranes. Nat. Rev. Mater., 8, 498(2023).

    [124] Q. Zhang et al. Interface nano-optics with van der Waals polaritons. Nature, 597, 187(2021).

    [125] R. Bonifacio, C. Pellegrini, L. M. Narducci. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun., 50, 373(1984).

    [126] J. R. Pierce. Traveling-wave tubes. Bell Syst. Tech. J., 29, 608(1950).

    [127] G. Robb. Ultra-tunable graphene light source. Nat. Photonics, 10, 3(2016).

    [128] K. S. Novoselov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [129] J. Ristein. Surface transfer doping of semiconductors. Science, 313, 1057(2006).

    [130] I. Kaminer et al. Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene. Nat. Commun., 7, ncomms11880(2016).

    [131] N. Rivera et al. Light emission based on nanophotonic vacuum forces. Nat. Phys., 15, 1284(2019).

    [132] Y. Tian et al. Electron emission at locked phases from the laser-driven surface plasma wave. Phys. Rev. Lett., 109, 115002(2012).

    [133] Y. Zeng et al. Experimental study on laser-driven electron collimation along wire targets. Phys. Plasmas, 26, 012701(2019).

    [134] J. Yang, Q. Cao, C. H. Zhou. Theory for terahertz plasmons of metallic nanowires with sub-skin-depth diameters. Opt. Express, 18, 18550(2010).

    [135] R. Lichters, J. Meyer-ter-Vehn, A. Pukhov. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas, 3, 3425(1996).

    [136] A. Gover et al. Superradiant and stimulated-superradiant emission of bunched electron beams. Rev. Mod. Phys., 91, 035003(2019).

    [137] K. Wang, D. M. Mittleman. Metal wires for terahertz wave guiding. Nature, 432, 376(2004).

    [138] H. Nakajima et al. Divergence-free transport of laser-produced fast electrons along a meter-long wire target. Phys. Rev. Lett., 110, 155001(2013).

    [139] M. Bocoum et al. Anticorrelated emission of high harmonics and fast electron beams from plasma mirrors. Phys. Rev. Lett., 116, 185001(2016).

    [140] G. Malka, J. L. Miquel. Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target. Phys. Rev. Lett., 77, 75(1996).

    [141] H. Nakajima et al. Divergence-free transport of laser-produced fast electrons along a meter-long wire target. Phys. Rev. Lett., 110, 155001(2013).

    [142] S. Tokita et al. Collimated fast electron emission from long wires irradiated by intense femtosecond laser pulses. Phys. Rev. Lett., 106, 255001(2011).

    [143] P. G. Brooke. Spontaneous emission of atomic systems in the presence of incident fields. J. Mod. Opt., 55, 2359(2008).

    [144] A. A. Svidzinsky, L. Yuan, M. O. Scully. Quantum amplification by superradiant emission of radiation. Phys. Rev. X, 3, 041001(2013).

    [145] A. Rousse et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett., 93, 135005(2004).

    [146] S. Kiselev, A. Pukhov, I. Kostyukov. X-ray generation in strongly nonlinear plasma waves. Phys. Rev. Lett., 93, 135004(2004).

    [147] K. T. Phuoc et al. Laser based synchrotron radiation. Phys. Plasmas, 12, 023101(2005).

    [148] R. C. Shah et al. Coherence-based transverse measurement of synchrotron X-ray radiation from relativistic laser-plasma interaction and laser-accelerated electrons. Phys. Rev. E, 74, 045401(2006).

    [149] S. Kneip et al. Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity. Phys. Rev. Lett., 100, 105006(2008).

    [150] K. Németh et al. Laser-driven coherent betatron oscillation in a laser-wakefield cavity. Phys. Rev. Lett., 100, 095002(2008).

    [151] R. Rakowski et al. Transverse oscillating bubble enhanced laser-driven betatron X-ray radiation generation. Sci. Rep., 12, 10855(2022).

    [152] A. Döpp et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator. Light Sci. Appl., 6, e17086(2017).

    [153] R. J. Shalloo et al. Automation and control of laser wakefield accelerators using Bayesian optimization. Nat. Commun., 11, 6355(2020).

    [154] W. Lu et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. Spec. Top. Accel. Beams, 10, 061301(2007).

    [155] A. H. Compton. A quantum theory of the scattering of X-rays by light elements. Phys. Rev., 21, 483(1923).

    [156] C. A. Ur. Gamma beam system at ELI-NP. AIP Conf. Proc., 1645, 237(2015).

    [157] J. C. Jacobsen. Correlation between scattering and recoil in the compton effect. Nature, 138, 25(1936).

    [158] K. Y. Ng. The equivalence of inverse Compton scattering and the undulator concept.

    [159] R. Smith et al. Precision measurements on oxygen formation in stellar helium burning with gamma-ray beams and a time projection chamber. Nat. Commun., 12, 5920(2021).

    [160] K. Poder et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Phys. Rev. X, 8, 031004(2018).

    [161] K. A. Tanaka et al. Current status and highlights of the ELI-NP research program. Matter Radiat. Extremes, 5, 024402(2020).

    [162] A. Gover. Superradiant and stimulated-superradiant emission in prebunched electron-beam radiators. I. Formulation. Phys. Rev. Spec. Top. Accel. Beams, 8, 030701(2005).

    [163] A. Gover et al. Superradiant and stimulated-superradiant emission in prebunched electron-beam radiators. II. Radiation enhancement schemes. Phys. Rev. Spec. Top. Accel. Beams, 8, 030702(2005).

    [164] G. Penn, M. Reinsch, J. S. Wurtele. Analytic model of bunched beams for harmonic generation in the low-gain free electron laser regime. Phys. Rev. Spec. Top. Accel. Beams, 9, 060702(2006).

    [165] W. P. Leemans et al. Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett., 91, 074802(2003).

    [166] G. Geloni et al. Theory of edge radiation. Part I. Foundations and basic applications. Nucl. Instrum. Methods Phys. Res., 605, 409(2009).

    [167] Y. Yang et al. Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys., 14, 894(2018).

    [168] J. Vieira et al. Generalized superradiance for producing broadband coherent radiation with transversely modulated arbitrarily diluted bunches. Nat. Phys., 17, 99(2021).

    [169] G. A. Mesyats et al. Phase-imposing initiation of Cherenkov superradiance emission by an ultrashort-seed microwave pulse. Phys. Rev. Lett., 118, 264801(2017).

    [170] K. Floettmann et al. Superradiant Cherenkov-wakefield radiation as THz source for FEL facilities. J. Synchrotron. Radiat., 28, 18(2021).

    [171] R. A. Ismailov, A. Y. Kazakov. Stimulated superradiance. J. Exp. Theor. Phys., 89, 454(1999).

    [172] W. S. Graves et al. MIT inverse Compton source concept. Nucl. Instrum. Methods Phys. Res., 608, S103(2009).

    [173] W. S. Graves et al. Compact X-ray source based on burst-mode inverse Compton scattering at 100 kHz. Phys. Rev. Spec. Top. Accel. Beams, 17, 120701(2014).

    [174] K. Ta Phuoc et al. All-optical Compton gamma-ray source. Nat. Photonics, 6, 308(2012).

    [175] N. Rivera et al. Ultrafast multiharmonic plasmon generation by optically dressed electrons. Phys. Rev. Lett., 122, 053901(2019).

    [176] G. Rosolen et al. Metasurface-based multi-harmonic free-electron light source. Light Sci. Appl., 7, 64(2018).

    [177] N. Rivera et al. Ultrafast multiharmonic plasmon generation by optically dressed electrons. Phys. Rev. Lett., 122, 053901(2019).

    [178] F. Liu et al. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photonics, 11, 289(2017).

    [179] X. Guo et al. Mid-infrared analogue polaritonic reversed Cherenkov radiation in natural anisotropic crystals. Nat. Commun., 14, 2532(2023).

    [180] Y. Yang et al. Photonic flatband resonances for free-electron radiation. Nature, 613, 42(2023).

    [181] C. Feng. Theoretical Studies on Novel High-Gain Seeded FEL Schemes, 19(2016).

    [182] M. Krüger, M. Schenk, P. Hommelhoff. Attosecond control of electrons emitted from a nanoscale metal tip. Nature, 475, 78(2011).

    [183] C. Li et al. Extreme nonlinear strong-field photoemission from carbon nanotubes. Nat. Commun., 10, 4891(2019).

    [184] C. Zhou et al. Direct mapping of attosecond electron dynamics. Nat. Photonics, 15, 216(2021).

    [185] H. Y. Kim et al. Attosecond field emission. Nature, 613, 662(2023).

    [186] L. Wimmer et al. Terahertz control of nanotip photoemission. Nat. Phys., 10, 432(2014).

    [187] P. Baum, A. H. Zewail. Attosecond electron pulses for 4D diffraction and microscopy. Proc. Natl. Acad. Sci. U.S.A., 104, 18409(2007).

    [188] S. A. Hilbert et al. Temporal lenses for attosecond and femtosecond electron pulses. Proc. Natl. Acad. Sci. U.S.A., 106, 10558(2009).

    [189] P. Baum, A. H. Zewail. 4D attosecond imaging with free electrons: diffraction methods and potential applications. Chem. Phys., 366, 2(2009).

    [190] A. Ryabov et al. Attosecond metrology in a continuous-beam transmission electron microscope. Sci. Adv., 6, eabb1393(2020).

    [191] F. O. Kirchner et al. Laser streaking of free electrons at 25 keV. Nat. Photonics, 8, 52(2014).

    [192] C. Kealhofer et al. All-optical control and metrology of electron pulses. Science, 352, 429(2016).

    [193] M. Drescher et al. Time-resolved atomic inner-shell spectroscopy. Nature, 419, 803(2002).

    [194] M. Kozák et al. Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum. Nat. Phys., 14, 121(2018).

    [195] M. Kozák, N. Schönenberger, P. Hommelhoff. Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys. Rev. Lett., 120, 103203(2018).

    [196] F. Mackenroth, A. R. Holkundkar, H.-P. Schlenvoigt. Ultra-intense laser pulse characterization using ponderomotive electron scattering. New J. Phys., 21, 123028(2019).

    Dongdong Zhang, Yushan Zeng, Ye Tian, Ruxin Li. Coherent free-electron light sources[J]. Photonics Insights, 2023, 2(3): R07
    Download Citation