• Laser & Optoelectronics Progress
  • Vol. 55, Issue 12, 121601 (2018)
Guangsen Li, Fengping Yan*, Wei Wang, and Nan Qiao
Author Affiliations
  • Key Laboratory of All Optical Network and Advanced Telecommunication Network of Ministry of Educaiton, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
  • show less
    DOI: 10.3788/LOP55.121601 Cite this Article Set citation alerts
    Guangsen Li, Fengping Yan, Wei Wang, Nan Qiao. Analysis of Multiband and Broadband Electromagnetically Induced Transparency Based on Three-Dimensional Coupling[J]. Laser & Optoelectronics Progress, 2018, 55(12): 121601 Copy Citation Text show less
    References

    [1] Cai W S, Chettiar U K, Kildishev A V et al. Optical cloaking with metamaterials[J]. Nature Photonics, 1, 224-227(2007).

    [2] Kussow A, Akyurtlu A, Angkawisittpan N. Optically isotropic negative index of refraction metamaterial[J]. Physica Status Solidi B, 245, 992-997(2008). http://onlinelibrary.wiley.com/doi/10.1002/pssb.200743377/full

    [3] Gingrich M A, Werner D H. Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms[J]. Electronics Letters, 41, 1266-1267(2005). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1541762

    [4] Garcia N, Nieto-Vesperinas M. Is there an experimental verification of a negative index of refraction yet?[J]. Optics Letters, 27, 885-887(2002). http://www.ncbi.nlm.nih.gov/pubmed/18026312

    [5] Shen C C, Li M Q, Zhou Y G et al. Novel structure design of left-handed material with broadband and low loss[J]. Laser & Optoelectronics Progress, 54, 091602(2017).

    [6] Tao H, Bingham C M, Pilon D et al. A dual band terahertz metamaterial absorber[J]. Journal of Physics D, 43, 225102(2010). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010JPhD...43v5102T&db_key=PHY&link_type=ABSTRACT

    [7] Zhang B, Chen F, Duan P F et al. Research on structure and characteristics of asymmetrical compound parabolic concentrator with plane absorber[J]. Acta Optica Sinica, 37, 1208002(2017).

    [8] Ding L, Wu Q Y, Song J F. et al. Perfect broadband terahertz antireflection by deep-subwavelength, thin, lamellar metallic gratings[J]. Advanced Optical Materials, 1, 910-914(2013). http://onlinelibrary.wiley.com/doi/10.1002/adom.201300321/full

    [9] Thoman A, Kern A, Helm H et al. Nanostructured gold films as broadband terahertz antireflection coatings[J]. Physical Review B, 77, 195405(2008). http://adsabs.harvard.edu/abs/2008PhRvB..77s5405T

    [10] Kim J, Soref R, Buchwald W R. Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull's-eye-shaped metamaterial[J]. Optics Express, 18, 17997-18002(2010). http://europepmc.org/abstract/med/20721186

    [11] Sun L, Wang X S, Liang X et al. Tunable plasmonically induced transparency with unsymmetrical resonators[J]. Laser & Optoelectronics Progress, 53, 012302(2016).

    [12] Sun Y, Shi T, Liu J. et al. Terahertz label-free bio-sensing with EIT-like metamaterials[J]. Acta Optica Sinica, 36, 0328001(2016). http://www.en.cnki.com.cn/Article_en/CJFDTotal-GXXB201603036.htm

    [13] Savo S. Casse B D F,Sridhar S. Observation of slow-light in a metamaterials waveguide at microwave frequencies[J]. Applied Physics Letters, 98, 171907(2011).

    [14] O'Hara J F. Singh R, Brener I, et al. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations[J]. Optics Express, 16, 1786-1795(2008). http://www.ncbi.nlm.nih.gov/pubmed/18542258

    [15] Panahpour A, Silani Y, Farrokhian M. et al. Coupled plasmon-exciton induced transparency and slow light in plexcitonic metamaterials[J]. Journal of the Optical Society of America B, 29, 2297-2308(2012). http://www.opticsinfobase.org/abstract.cfm?uri=josab-29-9-2297

    [16] Tang Y Z, Ma W Y, Wei Y H et al. A tunable terahertz metamaterial and its sensing performance[J]. Opto-Electronic Engineering, 44, 453-457(2017).

    [17] Han H X, Potyomina L G, Darinskii A A. et al. Phonon interference and thermal conductance reduction in atomic-scale metamaterials[J]. Physical Review B, 89, 180301(2014). http://arxiv.org/abs/1402.4398

    [18] Krause M, Stollenwerk A, Awo-Affouda C. et al. Combined molecular beam epitaxy low temperature scanning tunneling microscopy system: enabling atomic scale characterization of semiconductor surfaces and interfaces[J]. Journal of Vacuum Science & Technology B, 23, 1684-1689(2005).

    [19] Zhu Y F, Lin J. Sub-Doppler light amplification in a coherently pumped atomic system[J]. Physical Review A, 53, 1767-1774(1996). http://europepmc.org/abstract/MED/9913070

    [20] Chiam S Y, Singh R, Rockstuhl C. et al. Analogue of electromagnetically induced transparency in a terahertz metamaterial[J]. Physical Review B, 80, 153103(2009).

    [21] Tang B, Dai L, Jiang C. Electromagnetically induced transparency in hybrid plasmonic-dielectric system[J]. Optics Express, 19, 628-637(2011). http://www.ncbi.nlm.nih.gov/pubmed/21263602

    [22] Chen J. Tunable slow light in semiconductor metamaterial in a broad terahertz regime[J]. Journal of Applied Physics, 107, 093104(2010). http://scitation.aip.org/content/aip/journal/jap/107/9/10.1063/1.3357291

    [23] Zhao X L, Yuan C, Zhu L. et al. Graphene-based tunable terahertz plasmon-induced transparency metamaterial[J]. Nanoscale, 8, 15273-15280(2016). http://europepmc.org/abstract/MED/27500393

    [24] Zhu L, Meng F Y, Fu J H. et al. Multi-band slow light metamaterial[J]. Optics Express, 20, 4494-4502(2012). http://europepmc.org/abstract/med/22418208

    [25] Ning R X, Bao J, Jiao Z. Wide band electromagnetically induced transparency in graphene metasurface of composite structure[J]. Acta Physica Sinica, 66, 100202(2017).

    [26] Liu N, Weiss T, Mesch M. et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing[J]. Nano Letters, 10, 1103-1107(2010). http://pubs.acs.org/doi/abs/10.1021/nl902621d

    [27] Bückmann T, Stenger N, Kadic M. et al. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography[J]. Advanced Materials, 24, 2710-2714(2012). http://www.europepmc.org/abstract/MED/22495906

    [28] Jin X R, Park J, Zheng H Y. et al. Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling[J]. Optics Express, 19, 21652-21657(2011). http://www.ncbi.nlm.nih.gov/pubmed/22109014

    [29] Li H, Yuan L H, Zhou B. et al. Ultrathin multiband gigahertz metamaterial absorbers[J]. Journal of Applied Physics, 110, 014909(2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5954097

    [30] Su S S, Yan F P, Tan S Y et al. Design of antireflection coating based on broadband terahertz metamaterial with stand-up structure[J]. Chinese Journal of Lasers, 45, 0414001(2018).

    [31] Jiao D, Lu M Y, Michielssen E et al. A fast time-domain finite element-boundary integral method for electromagnetic analysis[J]. IEEE Transactions on Antennas and Propagation, 49, 1453-1461(2001). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=954934

    [32] Sun H H, Yan F P, Tan S Y et al. Simulation analysis on design of permeability-near-zero terahertz metamaterials[J]. Chinese Journal of Lasers, 45, 0614001(2018).

    Guangsen Li, Fengping Yan, Wei Wang, Nan Qiao. Analysis of Multiband and Broadband Electromagnetically Induced Transparency Based on Three-Dimensional Coupling[J]. Laser & Optoelectronics Progress, 2018, 55(12): 121601
    Download Citation