• Acta Physica Sinica
  • Vol. 69, Issue 11, 116401-1 (2020)
Hai-Long Fan and Ming-Wen Chen*
Author Affiliations
  • School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
  • show less
    DOI: 10.7498/aps.69.20200233 Cite this Article
    Hai-Long Fan, Ming-Wen Chen. Effect of straining flow on growth of columnar crystal in ternary undercooled melt[J]. Acta Physica Sinica, 2020, 69(11): 116401-1 Copy Citation Text show less

    Abstract

    As an important microstructure, columnar crystal growth technology, especially the growth technology of single columnar crystal plays an important role in improving the performances of semiconductor, optical devices and other related products. In many practical applications, because the alloy is composed of multi-component and there is inevitably flow in the melt, it is necessary to study the growth of columnar crystals in multi-component melt with flow separately. The growth of columnar crystal in a ternary undercooled melt subjected to straining flow under non-isothermal conditions is studied, and the approximate analytical expression for growth morphology of columnar crystal is given by using asymptotic method. It can be seen from the expression that straining flow is an important reason for irregular columnar crystal. When analyzing the effect of straining flow on the growth of columnar crystal in ternary melt, it is found that the incoming flow accelerates the growth velocity of the interface, while the outgoing straining flow reduces the growth velocity of the interface, namely, the straining flow makes the interface of columnar crystal deformed. At the same time, it is found that the interface deformation becomes more intense with the increase of flow velocity. The above conclusion can also be applied to the effect of straining flow on the interface morphology of columnar crystal in pure melt and binary melt. The comparison of the effects of straining flow on the interface of columnar crystal among pure melt, binary melt and ternary melt, shows that the interface morphology of columnar crystal in dilute alloy melt is more affected by straining flow than in the pure melt, but the more components are more easily affected by flow. However, the number of components in melt is not a decisive factor for the change of interface morphology of the columnar crystal, but the constitutional undercooling is an important factor for determining the interface morphology of multicomponent alloy. According to the conclusion of this paper, the influence of straining flow on the interface morphology of columnar crystal growth can be quantitatively predicted, which provides the necessary theoretical guidance in accurately controlling the interface morphology in the future.
    $\begin{split} &{\bar T_{\rm{L}}} = \frac{{{T_{\rm{L}}} - {T_{\rm{M}}}}}{{\Delta H/({c_{\rm{p}}}{\rho _{\rm{L}}})}},\;\;{\bar T_{\rm{S}}} = \frac{{{T_{\rm{S}}} - {T_{\rm{M}} }}}{{\Delta H/({c_{\rm{p}}}{\rho _{\rm{L}}})}},\\ &\bar C_{\rm{L}}^1 = \frac{{C_{\rm{L}}^1 - C_{\rm{e}}^1}}{{C_{\rm{e}}^1 - C_{\rm{S}}^1}},\;\;\bar C_{\rm{L}}^2 = \frac{{C_{\rm{L}}^2 - C_{\rm{e}}^2}}{{C_{\rm{e}}^2 - C_{\rm{S}}^2}},\\ & \bar P = \frac{P}{{{k_{\rm{L}}}V/({c_{\rm{p}}}a)}},\;\;\bar {{U}} = \frac{{{U}}}{V},\;\;\bar r = \frac{r}{a},\;\;\bar t = \frac{t}{{{a / V}}}.\end{split}$ (1)

    View in Article

    $\varepsilon \left(\frac{{\partial {T_{\rm{L}}}}}{{\partial t}} + {{U}} \cdot \nabla {T_{\rm{L}}}\right) = {\nabla ^2}{T_{\rm{L}}},$(2)

    View in Article

    $\varepsilon {\lambda _{\rm{T}}}\frac{{\partial {T_{\rm{S}}}}}{{\partial t}} = {\nabla ^2}{T_{\rm{S}}},$(3)

    View in Article

    $\varepsilon \left(\frac{{\partial C_{\rm{L}}^1}}{{\partial t}} + {{U}} \cdot \frac{{\partial C_{\rm{L}}^1}}{{\partial r}}\right) = \lambda _{\rm{D}}^1{\nabla ^2}C_{\rm{L}}^1,$(4)

    View in Article

    $\varepsilon \left(\frac{{\partial C_{\rm{L}}^2}}{{\partial t}} + {{U}} \cdot \frac{{\partial C_{\rm{L}}^2}}{{\partial r}}\right) = \lambda _{\rm{D}}^2{\nabla ^2}C_{\rm{L}}^2,$(5)

    View in Article

    $\varepsilon ({{U}} \cdot \nabla ){{U}} + \nabla P = Pr{\nabla ^2}{{U}},$(6)

    View in Article

    $\begin{split} &\varepsilon = \frac{{\Delta T}}{{\Delta H/{c_{\rm{p}}}{\rho _{\rm{L}}}}},\;{\lambda _{\rm{T}}} = \frac{{{\kappa _{\rm{L}}}}}{{{\kappa _{\rm{S}}}}},\;\lambda _{\rm{D}}^1 = \frac{{D_{\rm{L}}^1}}{{{\kappa _{\rm{L}}}}},\\ &\lambda _{\rm{D}}^2 = \frac{{D_{\rm{L}}^2}}{{{\kappa _{\rm{L}}}}},\;{\kappa _{\rm{L}}} = \frac{{{k_{\rm{L}}}}}{{{c_{\rm{p}}}{\rho _{\rm{L}}}}},\;Pr = \frac{\upsilon }{{{\kappa _{\rm{L}}}}},\end{split}$ (7)

    View in Article

    ${T_{\rm{L}}} = {T_{\rm{S}}} = {T_{\rm{I}}},$(8)

    View in Article

    $\begin{split}{T_{\rm{I}}} =\; & \varepsilon \varGamma 2K - \varepsilon {E^{ - 1}}{M_{\rm{K}}}{{{U}}_{\rm{I}}} - M_{\rm{C}}^1C_{\rm{L}}^1 - \varepsilon M_{\rm{e}}^1 \\ &- M_{\rm{C}}^2C_{\rm{L}}^2 - \varepsilon M_{\rm{e}}^2,\end{split}$(9)

    View in Article

    $ \varepsilon {{{U}}_{\rm{I}}} = ({K_{\rm{T}}}\nabla {T_{\rm{S}}} - \nabla {T_{\rm{L}}}) \cdot {{n}}, $ (10)

    View in Article

    $ \varepsilon S_{\rm{p}}^1{{{U}}_{\rm{I}}} = - \nabla C_{\rm{L}}^1{{n}}, $ (11)

    View in Article

    $ \varepsilon S_{\rm{p}}^2{{{U}}_{\rm{I}}} = - \nabla C_{\rm{L}}^{\rm{2}}{{n}}, $ (12)

    View in Article

    $ {{U}} \cdot {{n}} = 0,\;{{U}} \cdot \tau = 0, $ (13)

    View in Article

    $ \begin{split} & \varGamma = \frac{{\gamma \Delta {T_{\rm{M}} }}}{{a\Delta H\Delta T}},\;\;E = \frac{{\Delta T}}{{{T_{\rm{M}}}}},\;\;{M_{\rm{K}}} = \frac{V}{{\mu {T_{\rm{M}}}}},\\ &{K_{\rm{T}}} = \frac{{{k_{\rm{S}}}}}{{{k_{\rm{L}}}}},\;\;S_{\rm{p}}^1 = \frac{{({k_1} - 1)(1 - C_0^1)}}{{{k_1}\lambda _{\rm{D}} ^1}},\\ & S_{\rm{p}}^2 = \frac{{\left( {{k_2} - 1} \right)\left( {1 - C_0^2} \right)}}{{{k_2}\lambda _{\rm{D}}^2}},\;\;C_0^1 = \frac{{C_{\rm{e}}^1}}{{C_{\rm{e}}^1 - C_{\rm{S}}^1}},\\ &C_0^2 = \frac{{C_{\rm{e}}^2}}{{C_{\rm{e}}^2 - C_{\rm{S}}^2}},\;\;M_{\rm{C}}^1 = - \frac{{{m_1}(C_{\rm{e}}^1 - C_{\rm{S}}^1)}}{{\Delta H/{c_{\rm{p}}}{\rho _{\rm{L}}}}},\\ & M_{\rm{C}}^2 = - \frac{{{m_2}(C_{\rm{e}}^2 - C_{\rm{S}}^2)}}{{\Delta H/{c_{\rm{p}}}{\rho _{\rm{L}}}}},\;\;M_{\rm{e}}^1 = - \frac{{{m_1}(C_{\rm{e}}^1 - C_\infty ^1)}}{{\Delta T}},\\ &M_{\rm{e}}^2 = - \frac{{{m_2}(C_{\rm{e}}^2 - C_\infty ^2)}}{{\Delta T}}, \end{split} $()

    View in Article

    $\begin{split} & {T_{\rm{L}}} \to - \varepsilon,\;\;C_{\rm{L}}^1 \to - C_{{\rm{L}},\infty }^1\varepsilon,\\ & C_{\rm{L}}^2 \to - C_{{\rm{L}},\infty }^2\varepsilon,\;\;{{U}} \to Ax{{i}} + By{{j}},\end{split}$ (14)

    View in Article

    $C_{{\rm{L}},\infty }^1 = \frac{{(C_{\rm{e}}^1 - C_\infty ^1)\Delta H}}{{(C_{\rm{e}}^1 - C_{\rm{S}}^1){c_{\rm{p}}}{\rho _{\rm{L}}}\Delta T}},$()

    View in Article

    $C_{{\rm{L}},\infty }^2 = \frac{{(C_{\rm{e}}^2 - C_\infty ^2)\Delta H}}{{(C_{\rm{e}}^2 - C_{\rm{S}}^2){c_{\rm{p}}}{\rho _{\rm{L}}}\Delta T}},$()

    View in Article

    $A = {{{c_1}a}}/{V},~~ B = {{{c_2}a}}/{V},$()

    View in Article

    $R(\theta,0) = 1.$(15)

    View in Article

    $C_{\rm{S}}^i = {k_i}C_{\rm{L}}^i,$(16)

    View in Article

    $\begin{split} &\varepsilon \frac{{\partial {T_{\rm{L}}}}}{{\partial t}}+\varepsilon ({{U}} \cdot \nabla ){T_{\rm{L}}} + {\varepsilon ^2}{u_r}\frac{{\partial {T_{\rm{L}}}}}{{\partial \bar r}} \\=\;& {\nabla ^2}{T_{\rm{L}}}+2\varepsilon \frac{{{\partial ^2}{T_{\rm{L}}}}}{{\partial r\partial \bar r}}+{\varepsilon ^2}\frac{{{\partial ^2}{T_{\rm{L}}}}}{{\partial {{\bar r}^2}}}+\frac{\varepsilon }{r}\frac{{\partial {T_{\rm{L}}}}}{{\partial \bar r}},\end{split}$(17)

    View in Article

    $\varepsilon {\lambda _{\rm{T}}}\frac{{\partial {T_{\rm{S}}}}}{{\partial t}} = {\nabla ^2}{T_{\rm{S}}}+2\varepsilon \frac{{{\partial ^2}{T_{\rm{S}}}}}{{\partial r\partial \bar r}}+{\varepsilon ^2}\frac{{{\partial ^2}{T_{\rm{S}}}}}{{\partial {{\bar r}^2}}}+\frac{\varepsilon }{r}\frac{{\partial {T_{\rm{S}}}}}{{\partial \bar r}},$(18)

    View in Article

    $\begin{split} &\varepsilon \frac{{\partial C_L^1}}{{\partial t}}+\varepsilon ({{U}} \cdot \nabla )C_{\rm{L}}^1 + {\varepsilon ^2}{u_r}\frac{{\partial C_{\rm{L}}^1}}{{\partial t}} \\ =\; & \lambda _{\rm{D}}^1\left({\nabla ^2}C_{\rm{L}}^1 \!+\! 2\varepsilon \frac{{{\partial ^2}C_{\rm{L}}^1}}{{\partial r\partial \bar r}}\!+\!{\varepsilon ^2}\frac{{{\partial ^2}C_{\rm{L}}^1}}{{\partial {{\bar r}^2}}}\!+\!\frac{\varepsilon }{r}\frac{{\partial C_{\rm{L}}^1}}{{\partial \bar r}}\right),\end{split}$(19)

    View in Article

    $\begin{split} & \varepsilon \frac{{\partial C_L^2}}{{\partial t}}+\varepsilon ({{U}} \cdot \nabla )C_{\rm{L}}^2 + {\varepsilon ^2}{u_r}\frac{{\partial C_{\rm{L}}^2}}{{\partial t}} \\=\, & \lambda _{\rm{D}}^2\left({\nabla ^2}C_{\rm{L}}^2+2\varepsilon \frac{{{\partial ^2}C_{\rm{L}}^2}}{{\partial r\partial \bar r}}\!+\! {\varepsilon ^2}\frac{{{\partial ^2}C_{\rm{L}}^2}}{{\partial {{\bar r}^2}}}\!+\! \frac{\varepsilon }{r}\frac{{\partial C_{\rm{L}}^2}}{{\partial \bar r}}\right),\end{split}$(20)

    View in Article

    $\nabla {{U}}+\varepsilon \frac{{\partial {u_r}}}{{\partial \bar r}} = 0,$(21)

    View in Article

    $\begin{split} &\varepsilon ({{U}} \cdot \nabla ){{U}}+{\varepsilon ^2}{u_r}\frac{{\partial {{U}}}}{{\partial \bar r}} \\=\; & \Pr \left({\nabla ^2}{{U}} + 2\varepsilon \frac{{{\partial ^2}{{U}}}}{{\partial r\partial \bar r}} + {\varepsilon ^2}\frac{{{\partial ^2}{{U}}}}{{\partial {{\bar r}^2}}} + \frac{\varepsilon }{r}\frac{{\partial {{U}}}}{{\partial \bar r}}\right),\end{split}$(22)

    View in Article

    $\begin{split} {T_{\rm{I}}} =\;& {T_{\rm{L}}} = {T_{\rm{S}}} = 2\varepsilon \varGamma K - \varepsilon {E^{ - 1}}{M_{\rm{K}}}{{{U}}_{\rm{I}}} - M_{\rm{C}}^1C_{\rm{L}}^1 \\ &- M_{\rm{C}}^2C_{\rm{L}}^2 - \varepsilon M_{\rm{e}}^1 - \varepsilon M_{\rm{e}}^2,\end{split}$(23)

    View in Article

    $\varepsilon {{{U}}_{\rm{I}}} = ({K_{\rm{T}}}\nabla {T_{\rm{S}}} - \nabla {T_{\rm{L}}}) \cdot {{n}} + \varepsilon \frac{\partial }{{\partial \bar r}}({K_{\rm{T}}}{T_{\rm{S}}} - {T_{\rm{L}}}),$(24)

    View in Article

    $\varepsilon S_{\rm{p}}^1{{{U}}_I} = - \nabla C_{\rm{L}}^1 \cdot {{n}} - \varepsilon \frac{\partial }{{\partial \bar r}}C_{\rm{L}}^1,$(25)

    View in Article

    $\varepsilon S_{\rm{p}}^2{{{U}}_{\rm{I}}} = - \nabla C_{\rm{L}}^2 \cdot {{n}} - \varepsilon \frac{\partial }{{\partial \bar r}}C_{\rm{L}}^2.$(26)

    View in Article

    $ \begin{split} & {T_{\rm{L}}} \to - \varepsilon,\;\;C_{\rm{L}}^1 \to - C_{{\rm{L}},\infty }^1\varepsilon,\;\;C_{\rm{L}}^2 \to - C_{{\rm{L}},\infty }^2\varepsilon,\\ & {u_r} \to r(A{\cos ^2}\theta + B{\sin ^2}\theta ),\\ &{u_\theta } \to r(B - A)\sin \theta \cos \theta. \end{split} $ (27)

    View in Article

    $R(\theta,0) = 1.$(28)

    View in Article

    $ \varepsilon =\frac{{\Delta T}}{{\Delta H/{C_{\rm{P}}}{\rho _{\rm{L}}}}} \ll 1. $ (29)

    View in Article

    $\begin{split} & {T_{\rm{L}}} = \varepsilon {T_{{\rm{L}}0}} + {\varepsilon ^2}{T_{{\rm{L}}1}} + \cdots,\quad {T_{\rm{S}}} = \varepsilon {T_{{\rm{S}}0}} + {\varepsilon ^2}{T_{{\rm{S}}1}} + \cdots, \\ & C_{\rm{L}}^1 = \varepsilon C_{{\rm{L}}0}^1 + {\varepsilon ^2}C_{{\rm{L}}1}^1 + \cdots,~~ C_{\rm{L}}^2 \!=\! \varepsilon C_{{\rm{L}}0}^2 \!+\! {\varepsilon ^2}C_{{\rm{L}}1}^2 + \cdots,\\ & R = {R_0} + \varepsilon {R_1} + \cdots, \quad \bar R = {{\bar R}_0} + \varepsilon {{\bar R}_1} + \cdots, \\[-12pt] \end{split} $ (30)

    View in Article

    $K = - \frac{1}{{{R_0}}} + \frac{\varepsilon }{{R_0^2}}\left(\frac{{{\partial ^2}}}{{\partial {\theta ^2}}} + 1\right){R_1} + \cdots .$(31)

    View in Article

    $\begin{split} &{\nabla ^2}{T_{{\rm{L}}0}}=0,\;\;{\nabla ^2}{T_{{\rm{S}}0}}=0,\;\;{\nabla ^2}C_{{\rm{L}}0}^1=0,\\ &{\nabla ^2}C_{{\rm{L}}0}^2=0,\;\;\nabla {{{U}}_0}=0,\;\;{\nabla ^2}{{{U}}_0}=0.\end{split}$ (32)

    View in Article

    $\begin{split}{T_{{\rm{L}}0}} = {T_{{\rm{S0}}}} =\;& - \frac{{2\varGamma }}{{{R_0}}} - {E^{ - 1}}{M_{\rm{K}}}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}} - M_{\rm{C}}^1C_{L0}^1 \\ &- M_{\rm{C}}^2C_{{\rm{L}}0}^2 - M_{\rm{e}}^1 - M_{\rm{e}}^2,\end{split}$(33)

    View in Article

    $\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}} = {K_{\rm{T}}}\frac{{\partial {T_{{\rm{S}}0}}}}{{\partial r}} - \frac{{\partial {T_{{\rm{L}}0}}}}{{\partial r}},$(34)

    View in Article

    $S_{\rm{p}}^1\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}} = - \frac{{\partial C_{{\rm{L0}}}^1}}{{\partial r}},$(35)

    View in Article

    $S_{\rm{p}}^2\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}} = - \frac{{\partial C_{{\rm{L0}}}^2}}{{\partial r}},$(36)

    View in Article

    ${{{U}}_0}=0,$(37)

    View in Article

    $ \begin{split} & {T_{{\rm{L}}0}} \to - 1,\;\;C_{{\rm{L}}0}^1 \to - C_{{\rm{L}},\infty }^1,\;\;C_{{\rm{L}}0}^2 \to - C_{{\rm{L}},\infty }^2,\\ &{u_r}=r(A{\cos ^2}\theta + B{\sin ^2}\theta ),\\ &{u_\theta } \to r(B - A)\sin \theta \cos \theta. \end{split} $ (38)

    View in Article

    $R(\theta,0) = 1.$(39)

    View in Article

    $\frac{{\partial {u_r}}}{{\partial r}} + \frac{{{u_r}}}{r} + \frac{1}{r}\frac{{\partial {u_\theta }}}{{\partial \theta }} = 0,$(40)

    View in Article

    $\frac{1}{r}\frac{{\partial {u_r}}}{{\partial r}} + \frac{{{\partial ^2}{u_r}}}{{\partial {r^2}}} + \frac{1}{{{r^2}}}\frac{{{\partial ^2}{u_r}}}{{\partial {\theta ^2}}} - \frac{2}{{{r^2}}}\frac{{\partial {u_\theta }}}{{\partial \theta }} - \frac{1}{{{r^2}}}{u_r} = 0,$(41)

    View in Article

    $\frac{1}{r}\frac{{\partial {u_\theta }}}{{\partial r}} + \frac{{{\partial ^2}{u_\theta }}}{{\partial {r^2}}} + \frac{1}{{{r^2}}}\frac{{{\partial ^2}{u_\theta }}}{{\partial {\theta ^2}}}+\frac{2}{{{r^2}}}\frac{{\partial {u_r}}}{{\partial \theta }} - \frac{1}{{{r^2}}}{u_\theta } = 0,$(42)

    View in Article

    $ {u_r} \to Ar\cos (2\theta ),\;\;{u_\theta } \to - Ar\sin (2\theta ). $ (43)

    View in Article

    $\begin{split} & {u_r} = \left(r - \frac{{R_0^4}}{{{r^3}}}\right)A\cos (2\theta ), \\ & {u_\theta } = \left( - r - \frac{{R_0^4}}{{{r^3}}}\right)A\sin (2\theta ),\end{split} $()

    View in Article

    $ {T_{{\rm{L}}0}}(t) \!=\! {R_0}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{\rm{(}}{A_\lambda }+\ln {R_0} - \ln r){{\rm{e}}^{{{\overline R}_0} - \overline r}} \!-\! 1, $ (44)

    View in Article

    $ {T_{{\rm{S0}}}}={A_\lambda }{R_0}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}} - 1, $ (45)

    View in Article

    $ C_{{\rm{L0}}}^{\rm{1}}(t) = S_{\rm{p}}^{\rm{1}}{R_0}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}({A_\lambda } + \ln {R_0} - \ln r){{\rm{e}}^{{{\bar R}_0} - \bar r}} - C_{{\rm{L}},\infty }^1, $ (46)

    View in Article

    $ C_{{\rm{L0}}}^2(t) = S_{\rm{p}}^2{R_0}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}({A_\lambda } + \ln {R_0} - \ln r){{\rm{e}}^{{{\bar R}_0} - \bar r}} - C_{{\rm{L}},\infty }^2, $ (47)

    View in Article

    $\begin{split} & {{{\rm{d}}{R_0}}}/{{{\rm{d}}t}}= \\ \; &\frac{{{R_0} - 2\varGamma }}{{{R_0}({A_\lambda }{R_0} + M_{\rm{C}}^1S_{\rm{p}}^1{R_0}{A_\lambda } + M_{\rm{C}}^2S_{\rm{p}}^2{R_0}{A_\lambda } + {E^{ - 1}}{M_{\rm{K}}})}},\\ &\qquad {R_0}(0) = 1. \\[-12pt]\end{split}$ (48)

    View in Article

    $ \begin{split} t =\;& [4{\varGamma ^2}{A_\lambda }(M_{\rm{C}}^1S_{\rm{p}}^1 + M_{\rm{C}}^2S_{\rm{p}}^2 + 1) + 2\varGamma {M_{\rm{K}}}{E^{ - 1}}]\\ & \times \ln [({{{R_0} - 2\varGamma }})/({{1 - 2\varGamma }})]\\ &+ [2\varGamma {A_\lambda }(M_{\rm{C}}^1S_{\rm{p}}^1 + M_{\rm{C}}^2S_{\rm{p}}^2 + 1) + {E^{ - 1}}{M_{\rm{K}}}]({R_0} - 1)\\ &+ \frac{{{A_\lambda }}}{2}(M_{\rm{C}}^1S_{\rm{p}}^1 + M_{\rm{C}}^2S_{\rm{p}}^2 + 1)(R_0^2 - 1).\\[-15pt] \end{split} $ (49)

    View in Article

    $\frac{{\partial {T_{{\rm{L}}0}}}}{{\partial t}} + ({{{U}}_0} \cdot \nabla ){T_{{\rm{L}}0}} = {\nabla ^2}{T_{{\rm{L}}1}} + 2\frac{{{\partial ^2}{T_{{\rm{L}}0}}}}{{\partial r\partial \bar r}} + \frac{1}{r}\frac{{\partial {T_{{\rm{L}}0}}}}{{\partial \bar r}},$(50)

    View in Article

    ${\lambda _{\rm{S}}}\frac{{\partial {T_{{\rm{S}}0}}}}{{\partial t}} = {\nabla ^2}{T_{{\rm{S}}1}} + 2\frac{{{\partial ^2}{T_{{\rm{S}}0}}}}{{\partial r\partial \bar r}} + \frac{1}{r}\frac{{\partial {T_{{\rm{S}}0}}}}{{\partial \bar r}},$(51)

    View in Article

    $\begin{split} & \frac{{\partial C_{{\rm{L}}0}^1}}{{\partial t}} + ({{{U}}_0} \cdot \nabla )C_{{\rm{L}}0}^1 \\ ={}& \lambda _{\rm{D}}^1\left({\nabla ^2}C_{{\rm{L}}1}^1 + 2\frac{{{\partial ^2}C_{{\rm{L}}0}^1}}{{\partial r\partial \bar r}} + \frac{1}{r}\frac{{\partial C_{{\rm{L}}0}^1}}{{\partial \bar r}}\right), \end{split} $(52)

    View in Article

    $ \begin{split} & \frac{{\partial C_{{\rm{L}}0}^2}}{{\partial t}} + ({{{U}}_0} \cdot \nabla )C_{{\rm{L}}0}^2 \\ ={}& \lambda _{\rm{D}}^2\left({\nabla ^2}C_{{\rm{L}}1}^2 + 2\frac{{{\partial ^2}C_{{\rm{L}}0}^2}}{{\partial r\partial \bar r}} + \frac{1}{r}\frac{{\partial C_{{\rm{L}}0}^2}}{{\partial \bar r}}\right), \end{split} $(53)

    View in Article

    ${T_{{\rm{L1}}}} = {T_{{\rm{S1}}}}+\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{R_1}+{A_\lambda }{R_0}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{\bar R_1},$(54)

    View in Article

    $ \begin{split} {T_{{\rm{S1}}}} =\;& \frac{{2\varGamma }}{{R_0^2}}\left(\frac{{{\partial ^2}}}{{\partial {\theta ^2}}} + 1\right){R_1} - {E^{ - 1}}{M_{\rm{K}}}\frac{{{\rm{d}}{R_1}}}{{{\rm{d}}t}} - M_{\rm{C}}^{\rm{1}}C_{{\rm{L1}}}^{\rm{1}} \\ & - M_{\rm{C}}^{\rm{2}}C_{{\rm{L}}1}^2 + {\rm{(}}M_{\rm{C}}^{\rm{1}}S_{\rm{p}}^{\rm{1}} + M_{\rm{C}}^2S_{\rm{p}}^{\rm{2}}{\rm{)}}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{R_1}\\ &+ (M_{\rm{C}}^1S_{\rm{p}}^1 + M_{\rm{C}}^2S_{\rm{p}}^2){R_0}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{\bar R_1},\\[-15pt] \end{split} $ (55)

    View in Article

    $\begin{split}\frac{{{\rm{d}}{R_1}}}{{{\rm{d}}t}} =\; & {K_T}\frac{{\partial {T_{{\rm{S}}1}}}}{{\partial r}} - \frac{{\partial {T_{{\rm{L1}}}}}}{{\partial r}} - \frac{{{R_1}}}{{{R_0}}}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}} \\ & + {A_\lambda }{R_0}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}} - {A_\lambda }{R_0}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{\bar R_1},\end{split}$(56)

    View in Article

    $\begin{split} S_{\rm{p}}^1\frac{{{\rm{d}}{R_1}}}{{{\rm{d}}t}} =\; & - \frac{{\partial C_{{\rm{L1}}}^1}}{{\partial r}} - \frac{{S_{\rm{p}}^1}}{{{R_0}}}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{R_1}\\ & - S_{\rm{P}}^1\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{\bar R_1} + S_{\rm{p}}^1{R_0}{A_\lambda }\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}},\end{split}$(57)

    View in Article

    $\begin{split}S_{\rm{p}}^2\frac{{{\rm{d}}{R_1}}}{{{\rm{d}}t}} =\; & - \frac{{\partial C_{{\rm{L1}}}^2}}{{\partial r}} - \frac{{S_{\rm{p}}^2}}{{{R_0}}}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{R_1} \\ &- S_{\rm{p}}^2\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{\bar R_1} + S_{\rm{p}}^2{R_0}{A_\lambda }\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}.\end{split}$(58)

    View in Article

    ${T_{{\rm{L1}}}} \to 0,\;\;C_{{\rm{L1}}}^{\rm{1}} \to 0,\;\;C_{{\rm{L1}}}^{\rm{2}} \to 0, $ (59)

    View in Article

    ${R_1}(\theta,0) = 0.$(60)

    View in Article

    ${T_{{\rm{L}}1}} = {C_{{\rm{L}}0}} + {C_{{\rm{L}}2}}{r^{ - 2}}\cos (2\theta ) + T_{{\rm{L}}10}^* + T_{{\rm{L}}12}^*\cos (2\theta ),$(61)

    View in Article

    ${T_{{\rm{S}}1}} = {C_{{\rm{S0}}}} + {C_{{\rm{S2}}}}{r^2}\cos (2\theta ) + T_{{\rm{S1}}0}^*,$(62)

    View in Article

    $C_{{\rm{L}}1}^1 = C_{{\rm{C0}}}^1 + C_{{\rm{C2}}}^{\rm{1}}{r^{ - 2}}\cos (2\theta ) + C_{{\rm{C}}10}^{1*} + C_{{\rm{C12}}}^{{\rm{1*}}}\cos (2\theta ),$(63)

    View in Article

    $C_{{\rm{L}}1}^2 = C_{{\rm{C}}0}^2 + C_{{\rm{C}}2}^2{r^{ - 2}}\cos (2\theta ) + C_{{\rm{C10}}}^{{\rm{2*}}} + C_{{\rm{C}}12}^{2*}\cos (2\theta ),$(64)

    View in Article

    ${R_1} = {g_0} + {g_2}\cos (2\theta ),$(65)

    View in Article

    $\begin{split}{T_{\rm{L}}} =\; & \varepsilon {T_{{\rm{L}}0}} + {\varepsilon ^2}[{C_{{\rm{L}}0}} + {C_{{\rm{L}}2}}{r^{ - 2}}\cos (2\theta ) \\ &+ T_{{\rm{L}}10}^* + T_{{\rm{L}}12}^*\cos (2\theta )] + \cdots,\end{split}$(66)

    View in Article

    ${T_{\rm{S}}} = \varepsilon {T_{{\rm{S}}0}} + {\varepsilon ^2}[{C_{{\rm{S}}0}} + {C_{{\rm{S}}2}}{r^2}\cos (2\theta ) + T_{{\rm{S}}10}^*] + \cdots,$(67)

    View in Article

    $\begin{split} C_{\rm{L}}^1 =\; & \varepsilon C_{{\rm{L}}0}^1 + {\varepsilon ^2}[C_{{\rm{C}}0}^1 + C_{{\rm{C2}}}^{\rm{1}}{r^{ - 2}}\cos (2\theta ) \\ &+ C_{{\rm{C}}10}^{1*} + C_{{\rm{C}}12}^{1*}\cos (2\theta )],\end{split}$(68)

    View in Article

    $\begin{split} C_{\rm{L}}^2 =\; & \varepsilon C_{{\rm{L}}0}^2 + {\varepsilon ^2}[C_{{\rm{C}}0}^2 + C_{{\rm{C}}2}^2{r^{ - 2}}\cos (2\theta )\\ & + C_{{\rm{C}}10}^{2*} + C_{{\rm{C}}12}^{2*}\cos (2\theta )],\end{split}$(69)

    View in Article

    $ R = {R_0} + \varepsilon [{g_0} + {g_2}\cos (2\theta )] + \cdots . $ (70)

    View in Article

    ${{{U}}_I} = \frac{{\partial R}}{{\partial t}} = \frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}} + \varepsilon \left[ {\frac{{{\rm{d}}{g_0}}}{{{\rm{d}}t}} + \frac{{{\rm{d}}{g_2}}}{{{\rm{d}}t}}\cos (2\theta )} \right] + \cdots .$(71)

    View in Article

    $\small \begin{split} {C_{{\rm{L}}0}} =\;& \frac{{2\varGamma }}{{{R_0}}}{g_0} - {E^{ - 1}}{M_{\rm{K}}}\frac{{{\rm{d}}{g_0}}}{{{\rm{d}}t}} + (M_{\rm{C}}^{\rm{1}}S_{\rm{p}}^1 + M_{\rm{C}}^2S_{\rm{p}}^2)({g_0} + {R_0}{\bar g_0} - {A_\lambda }R_0^2 + {g_0})\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}\\ & {{ + (}}M_{\rm{C}}^1S_{\rm{p}}^1+M_{\rm{C}}^2S_{\rm{p}}^2)({R_0} + {R_0}{\bar g_0})\frac{{{\rm{d}}{g_0}}}{{{\rm{d}}t}} - \frac{1}{4}R_0^2{\lambda _{\rm{S}}}{A_\lambda }\frac{{{\rm{d}}{b_0}}}{{{\rm{d}}t}}+\frac{1}{4}({\lambda _{\rm{S}}}{A_\lambda } + {A_\lambda } + 1)R_0^2\frac{{{\rm{d}}{b_0}(t)}}{{{\rm{d}}t}} \\ & + \frac{1}{4}({A_\lambda } + 1)R_0^2{b_0}(t)\frac{{{\rm{d}}{{\bar R}_0}}}{{{\rm{d}}t}} + {A_\lambda }{R_0}{b_0}(t) +\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}({A_\lambda }{R_0}{\bar g_0}(t) - \frac{1}{4}{b_0}(t){R_0} + {g_0}(t)), \end{split}\tag{A1} $ ()

    View in Article

    $\small \begin{split} {C_{{\rm{L2}}}} =\;& - 6\varGamma {g_2} - {E^{ - 1}}{M_{\rm{K}}}R_0^2\frac{{{\rm{d}}{g_2}}}{{{\rm{d}}t}} + \left(\frac{1}{{\lambda _{\rm{D}}^1}}M_{\rm{C}}^1S_{\rm{p}}^1 + \frac{1}{{\lambda _{\rm{D}}^2}}M_{\rm{C}}^2S_{\rm{p}}^2\right)\frac{1}{4}{A_0}R_0^5\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}(1 + 2\ln {R_0})\\ &+ (M_{\rm{C}}^1S_{\rm{p}}^1 + M_{\rm{C}}^2S_{\rm{p}}^2)\left(\frac{1}{2}R_0^2\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{g_2} + \frac{1}{2}R_0^3\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{\bar g_2} - \frac{1}{2}R_0^3\frac{{{\rm{d}}{g_2}}}{{{\rm{d}}t}}\right)\\ &+ R_0^2\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{g_2} + {A_\lambda }R_0^3\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{\bar g_2} + \frac{1}{2}{A_0}R_0^5\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}\ln {R_0}, \end{split}\tag{A2} $ ()

    View in Article

    $\small\begin{split} T_{{\rm{L}}10}^* =\; &\frac{1}{4}\frac{{{b_0}(t)}}{{{R_0}}}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{r^2}{{\rm{e}}^{{{\bar R}_0} - {{\bar r}_0}}} + \frac{1}{4}{r^2}({A_\lambda } + \ln {R_0} + 1) \cdot \left(\frac{{{\rm{d}}{b_0}(t)}}{{{\rm{d}}t}} + {b_0}(t)\frac{{{\rm{d}}{{\bar R}_0}}}{{{\rm{d}}t}}\right){{\rm{e}}^{{{\bar R}_0} - {{\bar r}_0}}} - r\ln r{b_0}(t){{\rm{e}}^{{{\bar R}_0} - {{\bar r}_0}}}\\ & + ({A_\lambda } + \ln {R_0})r{b_0}(t){{\rm{e}}^{{{\bar R}_0} - {{\bar r}_0}}} + \frac{1}{4}{r^2}\ln r\left(\frac{{{\rm{d}}{b_0}(t)}}{{{\rm{d}}t}} + {b_0}(t)\frac{{{\rm{d}}{{\bar R}_0}}}{{{\rm{d}}t}}\right){{\rm{e}}^{{{\bar R}_0} - {{\bar r}_0}}},\end{split}\tag{A3} $ ()

    View in Article

    $\small T_{{\rm{L}}12}^* = - \frac{1}{4}{A_0}R_0^5\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{{\rm{e}}^{{{\bar R}_0} - {{\bar r}_0}}}{r^{ - 2}}\ln r - \frac{1}{4}{A_0}{R_0}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{{\rm{e}}^{{{\bar R}_0} - {{\bar r}_0}}}{r^2}\ln r,\tag{A4}$()

    View in Article

    $\small\begin{split} {C_{{\rm{S0}}}}=\; &\frac{{2\varGamma }}{{R_0^2}}{g_0} - {E^{ - 1}}{M_{\rm{k}} }\frac{{{\rm{d}}{g_0}}}{{{\rm{d}}t}} + (M_{\rm{C}}^1S_{\rm{p}}^1 + M_{\rm{C}}^2S_{\rm{p}}^2)({g_0} + {R_0}{\bar g_0} - {A_\lambda }R_0^2 + {g_0})\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}\\ & + (M_{\rm{C}}^1S_{\rm{p}}^1+M_{\rm{C}}^2S_{\rm{p}}^2)({R_0} + {R_0}{\bar g_0})\frac{{{\rm{d}}{g_0}}}{{{\rm{d}}t}} - \frac{1}{4}R_0^2{\lambda _{\rm{S}}}{A_\lambda }\frac{{{\rm{d}}{b_0}}}{{{\rm{d}}t}},\end{split}\tag{A5} $ ()

    View in Article

    $\small \begin{split} {C_{{\rm{S2}}}} =\; & - \frac{{6\varGamma }}{{R_0^4}}{g_2} - {E^{ - 1}}{M_{\rm{K}}}\frac{1}{{R_0^2}}\frac{{{\rm{d}}{g_2}}}{{{\rm{d}}t}} + \left(\frac{1}{{\lambda _{\rm{D}}^1}}M_{\rm{C}}^1S_{\rm{p}}^1 + \frac{1}{{\lambda _{\rm{D}}^2}}M_{\rm{C}}^2S_{\rm{p}}^2\right)\frac{1}{4}{A_0}{R_0}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}(1 + 2\ln {R_0})\\ &+ (M_{\rm{C}}^1S_{\rm{p}}^1 + M_{\rm{C}}^2S_{\rm{p}}^2)\left(\frac{1}{2}\frac{1}{{R_0^2}}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{g_2} + \frac{1}{2}\frac{1}{{{R_0}}}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{\bar g_2} - \frac{1}{2}\frac{1}{{{R_0}}}\frac{{{\rm{d}}{g_2}}}{{{\rm{d}}t}}\right),\end{split}\tag{A6} $ ()

    View in Article

    $\small T_{{\rm{S10}}}^{\rm{*}} = \frac{1}{4}{r^2}{\lambda _{\rm{S}}}{A_\lambda }\frac{{{\rm{d}}{b_0}(t)}}{{{\rm{d}}t}},\;\;{\text{其中}}~{b_0}(t) = {R_0}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}},\tag{A7} $ ()

    View in Article

    $\small \begin{split} C_{{\rm{C0}}}^1=\;& - S_{\rm{p}}^1({R_0} + {R_0}{\bar g_0})\frac{{{\rm{d}}{g_0}}}{{{\rm{d}}t}} + S_{\rm{p}}^1\left(2{A_\lambda }R_0^2 - {g_0} - \frac{{{R_0}}}{{4\lambda _{\rm{D}}^{\rm{1}}}}{b_0}\right)\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}\\ & - \frac{{R_0^2}}{4}\frac{1}{{\lambda _{\rm{D}}^1}}S_{\rm{p}}^1\frac{{{\rm{d}}{b_0}(t)}}{{{\rm{d}}t}}({A_\lambda } + 1) - \frac{{R_0^2}}{{4\lambda _{\rm{D}}^1}}S_{\rm{p}}^1{b_0}(t)\frac{{{\rm{d}}{{\bar g}_0}}}{{{\rm{d}}t}}({A_\lambda } + 1), \end{split}\tag{A8} $ ()

    View in Article

    $\small C_{{\rm{C2}}}^1 = - \frac{1}{4}\frac{1}{{\lambda _{\rm{D}}^1}}{A_0}S_{\rm{p}}^1R_0^5\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}} + \frac{1}{2}S_{\rm{p}}^1R_0^3\frac{{{\rm{d}}{g_2}}}{{{\rm{d}}t}} + \frac{1}{2}S_{\rm{p}}^1R_0^2\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{g_2} + \frac{1}{2}S_{\rm{p}}^1R_0^3\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{\bar g_2},\tag{A9}$()

    View in Article

    $\small \begin{split} C_{{\rm{C10}}}^{1*} =\; & \frac{1}{4}{r^2}\frac{1}{{\lambda _{\rm{D}}^1}}S_{\rm{p}}^1\left(\frac{{{\rm{d}}{b_0}(t)}}{{{\rm{d}}t}} + {b_0}(t)\frac{{{\rm{d}}{{\bar R}_0}}}{{{\rm{d}}t}}\right)({A_\lambda } + \ln {R_0} + 1 - \ln r){{\rm{e}}^{{{\bar R}_0} - {{\bar r}_0}}}\\ &+ rS_{\rm{p}}^1{R_0}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}(\ln r - {A_\lambda } - \ln {R_0}){{\rm{e}}^{{{\bar R}_0} - {{\bar r}_0}}} + \frac{{{r^2}}}{4}\frac{1}{{\lambda _{\rm{D}}^1}}S_{\rm{p}}^1\frac{{{b_0}}}{{{R_0}}}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{{\rm{e}}^{{{\bar R}_0} - {{\bar r}_0}}}, \end{split}\tag{A10} $ ()

    View in Article

    $\small C_{{\rm{C12}}}^{1*} = - \frac{1}{4}\frac{1}{{\lambda _{\rm{D}}^1}}{A_0}R_0^5S_{\rm{p}}^1\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{{\rm{e}}^{{{\bar R}_0} - \bar r}}{r^{ - 2}}\ln r - \frac{1}{4}\frac{1}{{\lambda _{\rm{D}}^1}}{A_0}{R_0}S_{\rm{p}}^1\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{{\rm{e}}^{{{\bar R}_0} - \bar r}}{r^2}\ln r,\tag{A11}$()

    View in Article

    $\small \begin{split} C_{{\rm{C0}}}^2=\; & - S_{\rm{p}}^2({R_0} + {R_0}{\bar g_0})\frac{{{\rm{d}}{g_0}}}{{{\rm{d}}t}} + S_{\rm{p}}^2\left(2{A_\lambda }R_0^2 - {g_0} - \frac{{{R_0}}}{{4\lambda _{\rm{D}}^2}}{b_0}\right)\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}\\ &- \frac{{R_0^2}}{4}\frac{1}{{\lambda _{\rm{D}}^2}}S_{\rm{p}}^2\frac{{{\rm{d}}{b_0}(t)}}{{{\rm{d}}t}}({A_\lambda } + 1) - \frac{{R_0^2}}{{4\lambda _{\rm{D}}^2}}S_{\rm{p}}^2{b_0}(t)\frac{{{\rm{d}}{{\bar g}_0}}}{{{\rm{d}}t}}({A_\lambda } + 1), \end{split}\tag{A12} $ ()

    View in Article

    $\small C_{{\rm{C2}}}^2 = - \frac{1}{4}\frac{1}{{\lambda _{\rm{D}}^2}}{A_0}S_{\rm{p}}^2R_0^5\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}} + \frac{1}{2}S_{\rm{p}}^2R_0^3\frac{{{\rm{d}}{g_2}}}{{{\rm{d}}t}} + \frac{1}{2}S_{\rm{p}}^2R_0^2\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{g_2} + \frac{1}{2}S_{\rm{p}}^2R_0^3\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{\bar g_2},\tag{A13}$()

    View in Article

    $\small\begin{split} C_{{\rm{C1}}0}^{2*} =\;& \frac{1}{4}{r^2}\frac{1}{{\lambda _{\rm{D}}^2}}S_{\rm{p}}^{\rm{2}}\left(\frac{{{\rm{d}}{b_0}(t)}}{{{\rm{d}}t}} + {b_0}(t)\frac{{{\rm{d}}{{\bar R}_0}}}{{{\rm{d}}t}}\right)({A_\lambda } + \ln {R_0} + 1 - \ln r){{\rm{e}}^{{{\bar R}_0} - {{\bar r}_0}}}\\ &+ rS_{\rm{p}}^2{R_0}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}(\ln r - {A_\lambda } - \ln {R_0}){{\rm{e}}^{{{\bar R}_0} - {{\bar r}_0}}} + \frac{{{r^2}}}{4}\frac{1}{{\lambda _{\rm{D}}^2}}S_{\rm{p}}^2\frac{{{b_0}}}{{{R_0}}}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{{\rm{e}}^{{{\bar R}_0} - {{\bar r}_0}}}, \end{split}\tag{A14}$ ()

    View in Article

    $\small C_{{\rm{C}}12}^{2*} = - \frac{1}{4}\frac{1}{{\lambda _{\rm{D}}^2}}{A_0}R_0^5S_{\rm{p}}^2\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{{\rm{e}}^{{{\bar R}_0} - \bar r}}{r^{ - 2}}\ln r - \frac{1}{4}\frac{1}{{\lambda _{\rm{D}}^2}}{A_0}{R_0}S_{\rm{p}}^2\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{{\rm{e}}^{{{\bar R}_0} - \bar r}}{r^2}\ln r,\tag{A15}$()

    View in Article

    $\small\begin{split} \frac{{{\rm{d}}{g_0}}}{{{\rm{d}}t}} =\; & - \frac{1}{{{R_0}}}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{g_0} + \frac{1}{2}{b_0}(t)\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}} + \frac{1}{2}\left({k_{\rm{T}}}{\lambda _{\rm{S}}}{A_\lambda } + {A_\lambda } + \frac{1}{2}\right){R_0}(t)\frac{{{\rm{d}}{b_0}}}{{{\rm{d}}t}}{{ + (2}}{A_\lambda } - 1){R_0}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}\\ &- {A_\lambda }{R_0}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{\bar g_0} + \frac{1}{2}({A_\lambda } + \frac{1}{2})R_0^2\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}\frac{{{\rm{d}}{{\bar R}_0}}}{{{\rm{d}}t}},\end{split}\tag{A16} $ ()

    View in Article

    $\small\begin{split} \frac{{{\rm{d}}{g_2}}}{{{\rm{d}}t}} =\; & \frac{{ - 12\varGamma R_0^{ - 2}(1 + {K_{\rm{T}}})}}{{{R_0} + 2{E^{ - 1}}{M_{\rm{K}}}(1 + {K_{\rm{T}}}) + (M_{\rm{C}}^1S_{\rm{p}}^1 + M_{\rm{C}}^2S_{\rm{p}}^2){R_0}(1 + {K_{\rm{T}}})}}{g_2}\\ &+ \frac{{(M_{\rm{C}}^1S_{\rm{p}}^1 + M_{\rm{C}}^2S_{\rm{p}}^2)(1 + {K_{\rm{T}}}) + 1}}{{{R_0} + 2{E^{ - 1}}{M_{\rm{K}} }(1 + {K_{\rm{T}}}) + (M_{\rm{C}}^1S_{\rm{p}}^1 + M_{\rm{C}}^2S_{\rm{p}}^2){R_0}(1 + {K_{\rm{T}}})}}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{g_2}\\ &+ \frac{{(M_{\rm{C}}^1S_{\rm{p}}^1 + M_{\rm{C}}^2S_{\rm{p}}^2)(1 + {K_{\rm{T}}}){R_0} + {A_\lambda }{R_0}(2 - {R_0})}}{{{R_0} + 2{E^{ - 1}}{M_{\rm{K}}}(1 + {K_{\rm{T}}}) + (M_{\rm{C}}^1S_{\rm{p}}^1 + M_{\rm{C}}^2S_{\rm{p}}^2){R_0}(1 + {K_{\rm{T}}})}}\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}{\bar g_2}\\ &+ \dfrac{{\Big(\dfrac{1}{{\lambda _{\rm{D}}^1}}M_{\rm{C}}^1S_{\rm{p}}^1 + \dfrac{1}{{\lambda _{\rm{D}}^2}}M_{\rm{C}}^2S_{\rm{p}}^2\Big)R_0^3(1 + 2\ln {R_0})(1 + {K_{\rm{T}}}) + R_0^3(1 + 2\ln {R_0})}}{{{R_0} + 2{E^{ - 1}}{M_{\rm{K}}}(1 + {K_{\rm{T}}}) + (M_{\rm{C}}^1S_{\rm{p}}^1 + M_{\rm{C}}^2S_{\rm{p}}^2){R_0}(1 + {K_{\rm{T}}})}}\frac{1}{2}A\frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}},\end{split}\tag{A17} $ ()

    View in Article

    $\small\frac{{{\rm{d}}{b_0}}}{{{\rm{d}}t}} = \frac{{{E^{ - 1}}{M_{\rm{K}}} + 2\varGamma {A_\lambda }(1 + M_{\rm{C}}^1S_{\rm{p}} ^1 + M_{\rm{C}}^2S_{\rm{p}} ^2)}}{{{{[{A_\lambda }{R_0}(1 + M_{\rm{C}}^1S_{\rm{p}} ^1 + M_{\rm{C}}^2S_{\rm{p}} ^2) + {E^{ - 1}}{M_{\rm{K}}}]}^2}}} \cdot \frac{{{\rm{d}}{R_0}}}{{{\rm{d}}t}}.\tag{A18}$()

    View in Article

    Hai-Long Fan, Ming-Wen Chen. Effect of straining flow on growth of columnar crystal in ternary undercooled melt[J]. Acta Physica Sinica, 2020, 69(11): 116401-1
    Download Citation