• Chinese Journal of Quantum Electronics
  • Vol. 29, Issue 2, 129 (2012)
Yu-na YANG1、2、3、*, Hao LIU1、2、3, Yue-hong HE1、2、3, Yi-he CHEN1、2, Lei SHE1、2, and Jiao-mei LI1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2012.02.001 Cite this Article
    YANG Yu-na, LIU Hao, HE Yue-hong, CHEN Yi-he, SHE Lei, LI Jiao-mei. Cooling effect of different buffer gas of trapped mercury ions in a linear ion trap[J]. Chinese Journal of Quantum Electronics, 2012, 29(2): 129 Copy Citation Text show less
    References

    [1] Blatt R, Schnatz H, Werth G. Precise determination of the 171Yb + ground state hyperfine separation [J]. Z. Phys. A, 1983, 312: 143-147.

    [2] Dick R H. The effect of collisions upon the Doppler width of spectral lines [J]. Phys. Rev., 1953, 89: 472.

    [3] Major F G, Werth G. High-resolution magnetic hyperfine resonance in harmonically bound ground-state 199Hg ions [J]. Phys. Rev. Lett., 1973, 30: 1155-1158.

    [4] Jardino M, Desainfuscien M, Barillet R, et al. Frequency stability of a mercury ion frequency standard [J]. Appl. Phys., 1981, 24: 107-112.

    [5] Culter L S, Giffard R P, Wheeler P J, et al. Initial operational experience with a mercury ion storage frequency standard [C]. Proc. of the 41st Annual Frequency Control Symposium, 1987, 12-19.

    [6] Prestage J D, Dick G J, Maleki L. The JPL trapped ion frequency standard development [C]. Proc. of the 41st Annual Frequency Control Symposium, 1987, 21.

    [7] Tjoelker R L, Prestage J D, Koppang P A, et al. Stability measurements of a JPL multi-pole mercury trapped ion frequency standard at the USNO [C]. Joint Meeting EFTF and IEEE IFCS, 2003, 1066-1071.

    [8] Prestage J D, Chung S, Le T, et al. Liter sized ion clock with 10-15 stability [C]. Proc. of the 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 2005, 472-476.

    [9] She L, Wang W M, Bai L, et al. Fluorescence detection and buffer gas cooling of trapped mercury ions in paul trap [J]. Chin. Phys. Lett., 2008, 25: 1653-1656.

    [11] Tjoelker R L, Prestage J D, Dick G J, et al. Long term stability of Hg trapped ion frequency standards [C]. Proc. of the 47th Annual Symposium on Frequency Control, 1993, 132-138.

    [14] Driver R D. Ordinary and Delay Differential Equations [M]. New York: Long-Mans, 1977; Mc Lachlan N W. Theory and Application of Mathieu Functions [M]. Oxford: Clarendon Press, 1947.

    [15] Wang M C, Uhlenbeck G E. On the theory of the Brownian motion II [J]. Rev. Mod. Phys., 1945, 17: 323-342.

    [16] Risken H. The Fokker Planck Equation: Methods of Solution and Applications [M]. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 1996: 18.

    [17] Kampen N G van. Stochastic Processes in Physics and Chemistry [M]. Amsterdam: North-tlotland, 2001.

    [18] Blatt R, Zoller P, Holzmiiller G, et al. Brownian motion of a parametric oscillator: A model for ion confinement in radio frequency traps [J]. Z. Phys. D-Atoms, Molecules and Clusters, 1986, 4: 121-126.

    [19] Kellerbauer A, Kim T, Moore R B, et al. Buffer gas cooling of ion beams [J]. Nuclear Instruments and Methods in Physics Research A, 2001, 469: 276-285.

    [20] Mason E A, McDaniel E W. Transport Properties of Ions in Gases [M]. New York: JohnWiley & Sons, 1988.

    [21] Prestage J D, Tjoelker R L, Dick G J, et al. Doppler sideband spectra of Hg ions in a linear trap [C]. IEEE International Frequency Control symposium, 1993.

    [22] Ellis H W, Thackston M G, McDaniel E W. Transport properties of gaseous ions ver a wide energy range [J]. Atomic Data and Nuclear Data Table, 1976, 17: 177.

    [23] Chung S K, Prestage J D. Gas frequency shifts in microwave mercury ion clocks [R]. IPN Progress Report, 2004.

    YANG Yu-na, LIU Hao, HE Yue-hong, CHEN Yi-he, SHE Lei, LI Jiao-mei. Cooling effect of different buffer gas of trapped mercury ions in a linear ion trap[J]. Chinese Journal of Quantum Electronics, 2012, 29(2): 129
    Download Citation