• INFRARED
  • Vol. 43, Issue 3, 8 (2022)
Jia-jia NIU*, Ming LIU, Wei-rong XING, Qian LI, and Wei-lin SHE
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1672-8785.2022.03.002 Cite this Article
    NIU Jia-jia, LIU Ming, XING Wei-rong, LI Qian, SHE Wei-lin. Development of Photoelectric Detectors Based on Low-Dimensional Materials[J]. INFRARED, 2022, 43(3): 8 Copy Citation Text show less
    References

    [2] Alain M, Laurent R, Yann R, et al. Improved IR Detectors to Swap Heavy System for SWaP[C]. SPIE, 2013, 8353: 835334.

    [3] Martyniuk P, Rogalski A. Quantum-dot Infrared Photodetectors: Status and Outlook[J]. Progress in Quantum Electronics, 2008, 32: 89120.

    [4] Narsingi K, Li S, Manasreh M O, et al. Optical Absorption of Proton Irradiated Colloidal CdSe/ZnS Core/Shell Nanocrystals[J]. IEEE Transactions on Nuclear Science, 2010, 57(5): 29292932.

    [6] Novoselov K S, Geim A. The Rise of Graphene[J]. Nature Materials, 2007, 6(3): 183-191.

    [7] Mueller T, Xia F, Avouris P, et al. Graphene Photodetectors for High-speed Optical Communications[J]. Nature Photonics, 2010, 4: 297301.

    [8] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 Transistors[J]. Nature Nanotechnology, 2011, 6(3): 147150.

    [9] Cheiwchanchamnangij T, Lambrecht W R L. Quasiparticle Band Structure Calculation of Monolayer, Bilayer, and Bulk MoS2[J]. Physical Review B, 2012, 85(20): 205302.

    [10] Nourbakhsh A , Zubair A, Sajjad RN,et al. MoS2 Field Effect Transistor with Sub-10 nm Channel Length[J]. Nano Lett, 2016, 16(12): 77987806.

    [11] Hansen L P, Ramasse Q M , Kisielowski C, et al. Atomic-Scale Edge Structures on Industrial-Style MoS2 Nanocatalysts[J]. Angewandte Chmie, 2011, 43(50): 1015310156.

    [12] Lin J, Li H, Zhang H, et al. Plasmonic Enhancement of Photocurrent in MoS2 Field-effect-transistor[J]. Applied Physics Letters, 2013, 102(20): 203109.

    [13] Wu Z Q, Yang J L, Manjunath N K, et al. Gap-mode Surface-plasmon-enhanced Photoluminescence and Photoresponse of MoS2[J]. Advanced Material, 2017, 30(27): 1706527.

    [14] Yu Y, Ji Z, Zu S, et al. Ultrafast Plasmonic Hot Electron Transfer in Au Nano Antenna/MoS2 Hetero Structures[J]. Advanced Function Material, 2016, 26(35): 63946401.

    [15] Guo J X, Li S D, Ke Y Z, et al. Broadband Photodetector Based on Vertically Stage-liked MoS2/Si Heterostructure with Ultra-high Sensitivity and Fast Response Speed[J]. Scripta Materialia, 2020, 176: 16.

    [16] Li S, He Z, Ke Z, et al. Ultra-sensitive Self-powered Photodetector Based on Vertical MoTe2/MoS2 Heterostructure[J]. Applied Physics Express, 2019, 13(1): 015007.

    [17] Li L, Yu Y, Ye G J, et al. Black Phosphorus Field-effect Transistors[J]. Nature Nanotechnology, 2014, 9(5): 372377.

    [18] Ling X, Wang H, Huang S, et al. The Renaissance of Black Phosphorus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 45234530.

    [19] Zhao Y T, Wang H Y, Huang H, et al. Surface Coordination of Black Phosphorus for Robust Air and Water Stability[J]. Angew Chem Int Ed, 2016, 55: 50035007.

    [20] Pei J J, Gai X, Yang J, et al. Producing Air-stable Monolayers of Phosphorene and Their Defect Engineering[J]. Nature Communications, 2015, 7: 10450.

    [21] Yang B C, Wan B S, Zhou Q H, et al. Te-doped Black Phosphorus Field-effect Transistors[J]. Advanced Material, 2016, 28: 94089415.

    [22] Yang J, Pan Z, Qiu Y, et al. Free-standing Black Phosphorus Thin Films for Flexible Quasi-solid-state Micro-Supercapacitors with High Volumetric Power and Energy Density[J]. ACS Applied & Materials Interfaces, 2019, 11: 59385946.

    [23] Kwak D H, Ramasamy P, Lee Y S, et al. High-performance Hybrid InP QDs/Black Phosphorus Photodetector[J]. ACS Applied & Materials Interfaces, 2019, 11(32): 2904129046.

    [24] Gabriel C. Constantinescu and Nicholas D. M. Hine. Multipurpose Black-Phosphorus/hBN Heterostructures[J]. Nano Lett, 2016, 16(4): 25862594.

    NIU Jia-jia, LIU Ming, XING Wei-rong, LI Qian, SHE Wei-lin. Development of Photoelectric Detectors Based on Low-Dimensional Materials[J]. INFRARED, 2022, 43(3): 8
    Download Citation