• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 6, 2150020 (2021)
Xin Tang1, Ping Zhong2、*, Yinrui Gao2, and Haowei Hu2
Author Affiliations
  • 1College of Information Science and Technology Donghua University, Shanghai 201620, P. R. China
  • 2College of Science, Donghua University Shanghai 201620, P. R. China
  • show less
    DOI: 10.1142/s1793545821500206 Cite this Article
    Xin Tang, Ping Zhong, Yinrui Gao, Haowei Hu. Numerical model for evaluating the speckle activity and characteristics of bone tissue under the biospeckle laser system[J]. Journal of Innovative Optical Health Sciences, 2021, 14(6): 2150020 Copy Citation Text show less
    References

    [1] T. Albrektsson, C. Johansson, "Osteoinduction, osteoconduction and osseointegration," Eur. Spine J. 10, S96–S101 (2001).

    [2] P. Habibovic, T. M. Sees, M. A. van den Doel, C. A. van Blitterswijk, K. de Groot, "Osteoinduction by biomaterials - Physicochemical and structural influences," J. Biomed. Mater. Res. A 77A, 747– 762 (2006).

    [3] K. A. Egol, A. Nauth, M. Lee, H.-C. Pape, J. T. Watson, J. Borrelli, Jr., "Bone grafting: Sourcing, timing, strategies, and alternatives," J. Orthopaedic Trauma 29(Suppl. 12), S10–S14 (2015).

    [4] E. Zhang, L. Xu, G. Yu, F. Pan, K. Yang, "In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation," J. Biomed. Mater. Res. A 90A, 882–893 (2009).

    [5] E. Garcia-Gareta, M. J. Coathup, G. W. Blunn, "Osteoinduction of bone grafting materials for bone repair and regeneration," Bone 81, 112–121 (2015).

    [6] P. Habibovic, H. P. Yuan, C. M. van der Valk, G. Meijer, C. A. van Blitterswijk, K. de Groot, "3D microenvironment as essential element for osteoinduction by biomaterials," Biomaterials 26, 3565– 3575 (2005).

    [7] M. L. Azi, A. Aprato, I. Santi, M. Kfuri, Jr., A. Masse, A. Joeris, "Autologous bone graft in the treatment of post-traumatic bone defects: A systematic review and meta-analysis," BMC Musculoskelet. Disord. 17, 465 (2016).

    [8] D. A. Boas, A. K. Dunn, "Laser speckle contrast imaging in biomedical optics," J. Biomed. Opt. 15, 011109 (2010).

    [9] V. V. Tuchin, "Coherent optical techniques for the analysis of tissue structure and dynamics," J. Biomed. Opt. 4, 106–124 (1999).

    [10] P. Zakharov, A. C. Voelker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Sche?old, B. Weber, "Dynamic laser speckle imaging of cerebral blood flow," Opt. Exp. 17, 13904–13917 (2009).

    [11] R. A. Braga, L. Dupuy, M. Pasqual, R. R. Cardoso, "Live biospeckle laser imaging of root tissues," Eur. Biophys. J. Biophys. Lett. 38, 679–686 (2009).

    [12] A. Zdunek, A. Adamiak, P. M. Pieczywek, A. Kurenda, "The biospeckle method for the investigation of agricultural crops: A review," Opt. Lasers Eng. 52, 276–285 (2014).

    [13] N. Budini, C. Mulone, N. Balducci, F. M. Vincitorio, A. J. Lopez, A. Ramil, "Characterization of drying paint coatings by dynamic speckle and holographic interferometry measurements," Appl. Opt. 55, 4706– 4712 (2016).

    [14] T. Fricke-Begemann, G. Gulker, K. D. Hinsch, K. Wol?, "Corrosion monitoring with speckle correlation," Appl. Opt. 38, 5948–5955 (1999).

    [15] I. Yamaguchi, M. Yokota, T. Ida, M. Sunaga, K. Kobayashi, "Monitoring of paint drying process by digital speckle correlation," Opt. Rev. 14, 362–364 (2007).

    [16] A. Arefi, P. A. Moghaddam, A. M. Motlagh, A. Hassanpour, "Towards real-time speckle image processing for mealiness assessment in apple fruit," Int. J. Food Prop. 20, S3135–S3148 (2018).

    [17] D. Youssef, J. El-Azab, H. Kandel, S. Hassab- Elnaby, H. El-Ghandoor, "Biospeckle local contrast analysis for surface roughness study of articular cartilage," Optik 183, 55–64 (2019).

    [18] P. Zhong, Z. Li, H. Yang, X. Tang, G. He, "A strain distribution sensing system for bone–implant interfaces based on digital speckle pattern interferometry," Sensors 19, 365 (2019).

    [19] E. E. Ramirez-Miquet, H. Cabrera, H. C. Grassi, E. D. J. Andrades, I. Otero, D. Rodriguez, J. G. Darias, "Digital imaging information technology for biospeckle activity assessment relative to bacteria and parasites," Lasers Med. Sci. 32, 1375–1386 (2017).

    [20] M. Z. Ansari, H. C. Grassi, H. Cabrera, E. D. J. Andrades, "Real time monitoring of drug action on T. cruzi parasites using a biospeckle laser method," Laser Phys. 26, 065603 (2016).

    [21] M. Z. Ansari, E. E. Ramirez-Miquet, I. Otero, D. Rodriguez and J. G. Darias, "Real time and online dynamic speckle assessment of growing bacteria using the method of motion history image," J. Biomed. Opt. 21, 66006 (2016).

    [22] G. Hernan Sendra, A. L. Dai Pr a, L. I. Passoni, R. Arizaga, H. J. Rabal, M. Trivi, Speckle 2010: Optical Metrology, vol. 7387, A. A. Goncalves Jr., and G. H. Kaufmann, Eds. (SPIE, 2010), Article Number: 73871K, doi: 10.1117/12.870682. Available: https://www.webofscience.com/wos/alldb/full-record/ WOS:000287657900056.

    [23] H. J. Rabal, R. A. Arizaga, N. L. Cap, M. Trivi, G. Romero, E. Alanis, "Transient phenomena analysis using dynamic speckle patterns," Opt. Eng. 35, 57–62 (1996).

    [24] M. Carmen Moron, "Water dynamics on the surface of the protein barstar," Phys. Chem. Chem. Phys. 14, 15393–15399 (2012).

    [25] N. Nandi, B. Bagchi, "Dielectric relaxation of biological water," J. Phys. Chem. B 101, 10954–10961 (1997).

    [26] E. Persson, B. Halle, "Cell water dynamics on multiple time scales," Proc. Natl. Acad. Sci. USA 105, 6266–6271 (2008).

    [27] T. Lemaire, T. T. Pham, N. H. de Leeuw, S. Naili, "Bone water at the nanoscale: A molecular dynamics study," Comput. Meth. Biomech. Biomed. Eng. 18, 1982–1983 (2015).

    [28] N. Mulji, S. Chandra, "Rupture and dewetting of water films on solid surfaces," J. Colloid Interface Sci. 352, 194–201 (2010).

    [29] J. M. Holmes, D. H. Davies, W. J. Meath, R. A. Beebe, "Gas adsorption and surface structure of bone mineral," Biochemistry 3, 2019–2024 (1964).

    [30] T. Lemaire, S. Lemonnier, S. Naili, "On the paradoxical determinations of the lacuno-canalicular permeability of bone," Biomech. Model. Mechanobiol. 11, 933–946 (2012).

    [31] T. Lemaire, T. T. Pham, E. Capiez-Lernout, N. H. de Leeuw, S. Naili, "Water in hydroxyapatite nanopores: Possible implications for interstitial bone fluid flow," J. Biomech. 48, 3066–3071 (2015).

    [32] A. Oulamara, G. Tribillon, J. Duvernoy, "Biologicalactivity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle," J. Mod. Opt. 36, 165–179 (1989).

    [33] V. Kyrki, D. Kragic, "Computer and robot vision," IEEE Robot. Autom. Mag. 18, 121–122 (2011).

    [34] R. Arizaga, M. Trivi, H. Rabal, "Speckle time evolution characterization by the co-occurrence matrix analysis," Opt. Laser Technol. 31, 163–169 (1999).

    [35] D. A. Boas, A. K. Dunn, "Laser speckle contrast imaging in biomedical optics," J. Biomed. Opt. 15, 12 (2010).

    [36] S. M. Daly, M. J. Leahy, "Go with the flow: A review of methods and advancements in blood flow imaging," J. Biophoton. 6, 217–255 (2013).

    [37] A. F. Fercher, J. D. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37, 326–330 (1981).

    [38] E. Jakeman, K. D. Ridley, "Modeling fluctuations in scattered waves," Opt. Optoelectron. 17, 405–406 (2006).

    [39] D. D. Duncan, S. J. Kirkpatrick, "The copula: A tool for simulating speckle dynamics," J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 25, 231–237 (2008).

    [40] S. J. Kirkpatrick, D. D. Duncan, E. M. Wells-Gray, "Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging," Opt. Lett. 33, 2886–2888 (2008).

    [41] I. Sigal, R. Gad, A. M. Caravaca-Aguirre, Y. Atchia, D. B. Conkey, R. Piestun, O. Levi, "Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging," Biomed. Opt. Exp. 5, 123–135 (2014).

    [42] F. G. Smith, Atmospheric propagation of radiation, The Infrared and Electro Optical Systems Handbook, Vol. 2 (SPIE, Bellingham, WA, USA, 1993), p. 109.

    [43] A. Papoulis, S. Pillai, Probability, Random Variables and Stochastic Processes, McGraw Hill Education (2013).

    [44] D. D. Duncan, S. J. Kirkpatrick, "Can laser speckle flowmetry be made a quantitative tool?," J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 25, 2088–2094 (2008).

    [45] X. L. Wu, D. J. Pine, P. M. Chaikin, J. S. Huang, D. A. Weitz, "Diffusing-wave spectroscopy in a shear- flow," J. Opt. Soc. Am. B-Opt. Phys. 7, 15–20 (1990).

    [46] A. Federico, G. H. Kaufmann, G. E. Galizzi, H. Rabal, M. Trivi, R. Arizaga, "Simulation of dynamic speckle sequences and its application to the analysis of transient processes," Opt. Commun. 260, 493–499 (2006).

    [47] H. Rabal, N. Cap, M. Trivi, R. Arizaga, A. Federico, G. E. Galizzi, G. H. Kaufmann, "Speckle activity images based on the spatial variance of the phase," Appl. Opt. 45, 8733–8738 (2006).

    [48] F. W. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press (2010).

    [49] J. Goodman, Speckle Phenomena in Optics: Theory and Applications, SPIE (2007).

    [50] P. King, "Low level laser therapy: A review," Lasers Med. Sci. 4, 141–150 (2009).

    [51] D. D. Duncan, S. J. Kirkpatrick, What is the proper statistical model for laser speckle flowmetry?, Complex Dynamics and Fluctuations in Biomedical Photonics V, Vol. 6855, V. V. Tuchin, L. V. Wang, Eds. (SPIE, 2008),ArticleNumber: 685502, doi: 10.1117/ 12.760515. Available: https://www.webofscience.com/ wos/alldb/full-record/WOS:000255358600001

    [52] E. Kenny, D. Coakley, G. Boyle, "Biospeckle in the human sclera and impact on laser speckle correlation measurement of eye tremor," J. Biomed. Opt. 18, 097009 (2013).

    [53] A. Gazzaley, J. Rissman, M. D'Esposito, "Functional connectivity during working memory maintenance," Cognitive Affective Behav. Neurosci. 4, 580–599 (2004).

    [54] Y. Sun, A. C. M. Wong, "Interval estimation for the normal correlation coefficient," Stat. Probab. Lett. 77, 1652–1661 (2007).

    Xin Tang, Ping Zhong, Yinrui Gao, Haowei Hu. Numerical model for evaluating the speckle activity and characteristics of bone tissue under the biospeckle laser system[J]. Journal of Innovative Optical Health Sciences, 2021, 14(6): 2150020
    Download Citation