• Advanced Photonics
  • Vol. 4, Issue 1, 014001 (2022)
Jianyu Zhang1、†, Xueqian Zhao1, Hanchen Shen1, Jacky W. Y. Lam1, Haoke Zhang2、3、4、*, and Ben Zhong Tang1、4、5、6、*
Author Affiliations
  • 1The Hong Kong University of Science and Technology, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Clear Water Bay, Kowloon, Hong Kong, China
  • 2Zhejiang University, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Hangzhou, China
  • 3ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
  • 4South China University of Technology, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangzhou, China
  • 5The Chinese University of Hong Kong, Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, Shenzhen, China
  • 6AIE Institute, Guangzhou Development District, Guangzhou, China
  • show less
    DOI: 10.1117/1.AP.4.1.014001 Cite this Article Set citation alerts
    Jianyu Zhang, Xueqian Zhao, Hanchen Shen, Jacky W. Y. Lam, Haoke Zhang, Ben Zhong Tang. White-light emission from organic aggregates: a review[J]. Advanced Photonics, 2022, 4(1): 014001 Copy Citation Text show less
    References

    [1] J. Cho et al. White light-emitting diodes: history, progress, and future. Laser Photonics Rev., 11, 1600147(2017).

    [2] E. F. Schubert, J. K. Kim. Solid-state light sources getting smart. Science, 308, 1274-1278(2005).

    [3] X. Li et al. A high efficacy and tunable white light-emitting diode cluster with both color fidelity and nonvisual performances close to natural lights. Color Res. Appl., 45, 1067-1075(2020).

    [4] S. Ye et al. Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater. Sci. Eng. R Rep., 71, 1-34(2010).

    [5] H. Zhang, Q. Su, S. Chen. Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission. Nat. Commun., 11, 2826(2020).

    [6] S. Nakamura et al. Superbright green InGaN single-quantum-well-structure light-emitting diodes. Jpn. J. Appl. Phys., 34, L1332-L1335(1995).

    [7] M. D. Smith, H. I. Karunadasa. White-light emission from layered halide perovskites. Acc. Chem. Res., 51, 619-627(2018).

    [8] T. Pulli et al. Advantages of white LED lamps and new detector technology in photometry. Light Sci. Appl., 4, e332(2015).

    [9] P. Schlotter, R. Schmidt, J. Schneider. Luminescence conversion of blue light emitting diodes. Appl. Phys. A, 64, 417-418(1997).

    [10] C.-Y. Sun et al. Efficient and tunable white-light emission of metal–organic frameworks by iridium-complex encapsulation. Nat. Commun., 4, 2717(2013).

    [11] X. Zhao et al. Metallophilicity-induced clusterization: single-component white-light clusteroluminescence with stimulus response. CCS Chem., 3, 3039-3049(2021).

    [12] D. Tu et al. How do molecular motions affect structures and properties at molecule and aggregate levels?. J. Am. Chem. Soc., 143, 11820-11827(2021).

    [13] E. Merritt. The relation between intensity of fluorescence and concentration in solid solutions. J. Opt. Soc. Am., 12, 613-622(1926).

    [14] W. F. Watson, R. Livingston. Concentration quenching of fluorescence in chlorophyll solutions. Nature, 162, 452-453(1948).

    [15] J. Luo et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun., 18, 1740-1741(2001).

    [16] H. Zhang et al. Aggregate science: from structures to properties. Adv. Mater., 32, 2001457(2020).

    [17] Z. Zhao et al. Aggregation-induced emission: new vistas at aggregate level. Angew. Chem. Int. Ed., 59, 9888-9907(2020).

    [18] J. Yang, M. Fang, Z. Li. Organic luminescent materials: the concentration on aggregates from aggregation-induced emission. Aggregate, 1, 6-18(2020).

    [19] Y. Tu et al. Aggregate science: much to explore in the meso world. Matter, 4, 338-349(2021).

    [20] W. Xu, D. Wang, B. Z. Tang. NIR-II AIEgens: a win–win integration towards bioapplications. Angew. Chem. Int. Ed., 60, 7476-7487(2021).

    [21] J. Zhang et al. Stimuli-responsive AIEgens. Adv. Mater., 33, 2008071(2021).

    [22] Y. Wang et al. Sugar-based aggregation-induced emission luminogens: design, structures, and applications. Chem. Rev., 120, 4537-4577(2020).

    [23] Z. Li et al. Aggregation-induced emission-active gels: fabrications, functions, and applications. Adv. Mater., 33, 2100021(2021).

    [24] S. Ma et al. Organic molecular aggregates: from aggregation structure to emission property. Aggregate, 2, e96(2021).

    [25] M. Yu et al. Promising applications of aggregation-induced emission luminogens in organic optoelectronic devices. PhotoniX, 1, 11(2020).

    [26] S. Xu, Y. Duan, B. Liu. Precise molecular design for high-performance luminogens with aggregation-induced emission. Adv. Mater., 32, 1903530(2020).

    [27] J. Kido, M. Kimura, K. Nagai. Multilayer white light-emitting organic electroluminescent device. Science, 267, 1332-1334(1995).

    [28] S. Reineke et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature, 459, 234-238(2009).

    [29] H. Wang et al. Positive/negative phototropism: controllable molecular actuators with different bending behavior. CCS Chem., 3, 1491-1500(2020).

    [30] Y. Tu et al. Mechanistic connotations of restriction of intramolecular motions (RIM). Natl. Sci. Rev., 8, nwaa260(2020).

    [31] J. Zhang et al. Restriction of intramolecular motion (RIM): investigating AIE mechanism from experimental and theoretical studies. Chem. Res. Chin. Univ., 37, 1-15(2021).

    [32] Q. Peng, Z. Shuai. Molecular mechanism of aggregation-induced emission. Aggregate, 2, e91(2021).

    [33] H. Shen et al. Photodegradation-induced turn-on luminescence of tetraphenylethylene-based trithiocarbonate polymers. Chin. J. Chem., 39, 2837-2842(2021).

    [34] Z. Chen et al. Single-molecular white-light emitters and their potential WOLED applications. Adv. Mater., 32, 1903269(2020).

    [35] B. Roy et al. All in one: stimuli-responsive, efficient mitotracking, and single source white light emission. J. Phys. Chem. Lett., 12, 1162-1168(2021).

    [36] Y. Tu et al. An intelligent AIEgen with nonmonotonic multiresponses to multistimuli. Adv. Sci., 7, 2001845(2020).

    [37] Y. Yang et al. An organic white light-emitting fluorophore. J. Am. Chem. Soc., 128, 14081-14092(2006).

    [38] M. Kasha. Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc., 9, 14-19(1950).

    [39] H. Wang et al. A new strategy for achieving single-molecular white-light emission: using vibration-induced emission (VIE) plus aggregation-induced emission (AIE) mechanisms as a two-pronged approach. Chem. Commun., 55, 1879-1882(2019).

    [40] D. Tu et al. Highly emissive organic single-molecule white emitters by engineering o-carborane-based luminophores. Angew. Chem. Int. Ed., 56, 11370-11374(2017).

    [41] Z. Xie et al. Hydrogen-bonding-assisted intermolecular charge transfer: a new strategy to design single-component white-light-emitting materials. Adv. Funct. Mater., 27, 1703918(2017).

    [42] K.-C. Tang et al. Fine tuning the energetics of excited-state intramolecular proton transfer (ESIPT): white light generation in a single ESIPT system. J. Am. Chem. Soc., 133, 17738-17745(2011).

    [43] H. Liu et al. ESIPT-active organic compounds with white luminescence based on crystallization-induced keto emission (CIKE). Chem. Commun., 53, 7832-7835(2017).

    [44] Y. Chen et al. Color-tunable and ESIPT-inspired solid fluorophores based on benzothiazole derivatives: aggregation-induced emission, strong solvatochromic effect, and white light emission. ACS Appl. Mater. Interfaces, 12, 55094-55106(2020).

    [45] B. Li et al. Realizing efficient single organic molecular white light-emitting diodes from conformational isomerization of quinazoline-based emitters. ACS Appl. Mater. Interfaces, 12, 14233-14243(2020).

    [46] S. Samanta, U. Manna, G. Das. White-light emission from simple AIE-ESIPT-excimer tripled single molecular system. New J. Chem., 41, 1064-1072(2017).

    [47] N. A. Kukhta, M. R. Bryce. Dual emission in purely organic materials for optoelectronic applications. Mater. Horiz., 8, 33-55(2021).

    [48] J. Chatsirisupachai et al. Unique dual fluorescence emission in the solid state from a small molecule based on phenanthrocarbazole with an AIE luminogen as a single-molecule white-light emissive material. Mater. Chem. Front., 5, 2361-2372(2021).

    [49] X. Chen et al. Nondoped red fluorophores with hybridized local and charge-transfer state for high-performance fluorescent white organic light-emitting diodes. ACS Appl. Mater. Interfaces, 11, 39026-39034(2019).

    [50] X. Feng et al. Dual fluorescence of tetraphenylethylene-substituted pyrenes with aggregation-induced emission characteristics for white-light emission. Chem. Sci., 9, 5679-5687(2018).

    [51] A. Mangini. Advances in Molecular Spectroscopy Volume 2: Proceedings of the Fourth International Meeting On Molecular Spectroscopy(1962).

    [52] Y. Gao et al. Hybridization and de-hybridization between the locally-excited (LE) state and the charge-transfer (CT) state: a combined experimental and theoretical study. Phys. Chem. Chem. Phys., 18, 24176-24184(2016).

    [53] H. Shen, Y. Li, Y. Li. Self-assembly and tunable optical properties of intramolecular charge transfer molecules. Aggregate, 1, 57-68(2020).

    [54] W. Zhao, Z. He, B. Z. Tang. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater., 5, 869-885(2020).

    [55] H. Gao, X. Ma. Recent progress on pure organic room temperature phosphorescent polymers. Aggregate, 2, e38(2021).

    [56] P. Alam et al. Two are better than one: a design principle for ultralong-persistent luminescence of pure organics. Adv. Mater., 32, 2001026(2020).

    [57] H. Tian et al. Molecular engineering for metal-free amorphous room-temperature phosphorescent materials. Angew. Chem. Int. Ed., 59, 11206-11216(2019).

    [58] X. Zhang et al. Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons. Nat. Commun., 10, 5161(2019).

    [59] Y. Sun et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature, 440, 908-912(2006).

    [60] M. Shimizu, T. Sakurai. Metal-free organic luminophores that exhibit dual fluorescence and phosphorescence emission at room temperature. ChemPlusChem, 86, 446-459(2021).

    [61] J. A. Li et al. Transient and persistent room-temperature mechanoluminescence from a white-light-emitting AIEgen with tricolor emission switching triggered by light. Angew. Chem. Int. Ed., 57, 6449-6453(2018).

    [62] P. She et al. Controlling organic room temperature phosphorescence through external heavy-atom effect for white light emission and luminescence printing. Adv. Opt. Mater., 8, 1901437(2019).

    [63] J. Wang et al. A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. Nat. Commun., 9, 2963(2018).

    [64] T. Smith, J. Guild. The C.I.E. colorimetric standards and their use. Trans. Opt. Soc., 33, 73-134(1931).

    [65] Y. Wen et al. Modulating room temperature phosphorescence by oxidation of thianthrene to achieve pure organic single-molecule white-light emission. CCS Chem., 3, 1940-1948(2020).

    [66] B. Xu et al. White-light emission from a single heavy atom-free molecule with room temperature phosphorescence, mechanochromism and thermochromism. Chem. Sci., 8, 1909-1914(2017).

    [67] S. Cai et al. Enhancing ultralong organic phosphorescence by effective π-type halogen bonding. Adv. Funct. Mater., 28, 1705045(2018).

    [68] L. Xiao, H. Fu. Enhanced room-temperature phosphorescence through intermolecular halogen/hydrogen bonding. Chem. Eur. J., 25, 714-723(2019).

    [69] Y. Wen et al. One-dimensional π–π stacking induces highly efficient pure organic room-temperature phosphorescence and ternary-emission single-molecule white light. J. Mater. Chem. C, 7, 12502(2019).

    [70] S. Cai et al. Hydrogen-bonded organic aromatic frameworks for ultralong phosphorescence by intralayer π-π interactions. Angew. Chem. Int. Ed., 57, 4005-4009(2018).

    [71] C. Zhou et al. Ternary emission of fluorescence and dual phosphorescence at room temperature: a single-molecule white light emitter based on pure organic aza-aromatic material. Adv. Funct. Mater., 28, 1802407(2018).

    [72] W. Z. Yuan et al. Crystallization-induced phosphorescence of pure organic luminogens at room temperature. J. Phys. Chem. C, 114, 6090-6099(2010).

    [73] M. Beer, H. C. Longuet-Higgins. Anomalous light emission of azulene. J. Chem. Phys., 23, 1390-1391(1955).

    [74] J. C. Del Valle, J. Catalan. Kasha’s rule: a reappraisal. Phys. Chem. Chem. Phys., 21, 10061-10069(2019).

    [75] T. Itoh. Fluorescence and phosphorescence from higher excited states of organic molecules. Chem. Rev., 112, 4541-4568(2012).

    [76] L. Shi et al. De novo strategy with engineering anti-Kasha/Kasha fluorophores enables reliable ratiometric quantification of biomolecules. Nat. Commun., 11, 793(2020).

    [77] Y. Zhou et al. Anti-Kasha’s rule emissive switching induced by intermolecular H-bonding. Chem. Mater., 30, 8008-8016(2018).

    [78] T. Wang et al. Aggregation-induced dual-phosphorescence from organic molecules for nondoped light-emitting diodes. Adv. Mater., 31, 1904273(2019).

    [79] D. Chaudhuri et al. Metal-free OLED triplet emitters by side-stepping Kasha’s rule. Angew. Chem. Int. Ed., 52, 13449-13452(2013).

    [80] T. Itoh. Successive occurrence of the T1(π, π*) and T2(n, π*) phosphorescence and the S1(n, π*) fluorescence observed for p-cyanobenzaldehyde in a solid matrix. J. Lumin., 109, 221-225(2004).

    [81] Z. He et al. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat. Commun., 8, 416(2017).

    [82] J. Zhang et al. How to manipulate through-space conjugation and clusteroluminescence of simple AIEgens with isolated phenyl rings. J. Am. Chem. Soc., 143, 9565-9574(2021).

    [83] Z. Wang et al. Recent advances in clusteroluminescence. Top. Curr. Chem., 379, 14(2021).

    [84] B. He et al. Clusteroluminescence from cluster excitons in small heterocyclics free of aromatic rings. Adv. Sci., 8, 2004299(2021).

    [85] H. Zhang et al. Clusterization-triggered emission: uncommon luminescence from common materials. Mater. Today, 32, 275-292(2019).

    [86] H. Zhang et al. Why do simple molecules with ‘isolated’ phenyl rings emit visible light?. J. Am. Chem. Soc., 139, 16264-16272(2017).

    [87] Z. Zhao et al. Revisiting an ancient inorganic aggregation-induced emission system: an enlightenment to clusteroluminescence. Aggregate, 2, e36(2021).

    [88] Z. Zhou et al. Achieving white-light emission in a single-component polymer with halogen-assisted interaction. Sci. China Chem., 64, 467-477(2021).

    [89] B. Liu et al. Clustering-induced white light emission from carbonized polymer dots. Adv. Photonics Res., 2, 2000161(2021).

    [90] C. Shang et al. Orange-red and white-emitting nonconventional luminescent polymers containing cyclic acid anhydride and lactam groups. J. Mater. Chem. C, 8, 1017-1024(2020).

    [91] Y. Shi et al. Carbon dots: an innovative luminescent nanomaterial. Aggregate, e108(2021).

    [92] B. Liu et al. Fluorescent linear CO2-derived poly(hydroxyurethane) for cool white LED. J. Mater. Chem. C, 5, 4892-4898(2017). https://doi.org/10.1039/C7TC01236E

    [93] H. Dong et al. Organic composite materials: understanding and manipulating excited states toward higher light-emitting performance. Aggregate, 2, e103(2021).

    [94] L. Zhang et al. Covalent organic frameworks for optical applications. Aggregate, 2, e24(2021).

    [95] N. Hendler et al. Efficient separation of dyes by mucin: toward bioinspired white-luminescent devices. Adv. Mater., 23, 4261-4264(2011).

    [96] A. Rizzo et al. White light with phosphorescent protein fibrils in OLEDs. Nano Lett., 10, 2225-2230(2010).

    [97] T. Weng et al. A fluorescence-phosphorescence-phosphorescence triple-channel emission strategy for full-color luminescence. Small, 16, 1906475(2020).

    [98] C. Liu et al. Functionalization of silk by AIEgens through facile bioconjugation: full-color fluorescence and long-term bioimaging. Angew. Chem. Int. Ed., 60, 12424-12430(2021).

    [99] C. Chen et al. Carbazole isomers induce ultralong organic phosphorescence. Nat. Mater., 20, 175-180(2021).

    [100] B. Chen et al. Organic guest-host system produces room-temperature phosphorescence at part-per-billion level. Angew. Chem. Int. Ed., 60, 16970-16973(2021).

    [101] D. Wang et al. Excitation-dependent triplet–singlet intensity from organic host–guest materials: tunable color, white-light emission, and room-temperature phosphorescence. J. Phys. Chem. Lett., 12, 1814-1821(2021).

    [102] R. Kabe, C. Adachi. Organic long persistent luminescence. Nature, 550, 384-387(2017).

    [103] Y. Lei et al. Wide-range color-tunable ultralong organic phosphorescence materials for printable and writable security inks. Angew. Chem. Int. Ed., 59, 16054-16060(2020).

    [104] S. Sun et al. A universal strategy for organic fluid phosphorescence materials. Angew. Chem. Int. Ed., 60, 18557-18560(2021).

    [105] H.-T. Feng, J. W. Y. Lam, B. Z. Tang. Self-assembly of AIEgens. Coord. Chem. Rev., 406, 213142(2020).

    [106] Q. Zhao et al. Tunable white-light emission by supramolecular self-sorting in highly swollen hydrogels. Chem. Commun., 54, 200-203(2018).

    [107] X.-Y. Lou, Y.-W. Yang. Aggregation-induced emission systems involving supramolecular assembly. Aggregate, 1, 19-30(2020).

    [108] H.-L. Yang et al. Metal-free white light-emitting fluorescent material based on simple pillar[5]arene-tripodal amide system and theoretical insights on its assembly and fluorescent properties. Langmuir, 36, 13469-13476(2020).

    [109] T. Xiao et al. An efficient artificial light-harvesting system with tunable emission in water constructed from a H-bonded AIE supramolecular polymer and Nile red. Chem. Commun., 56, 12021-12024(2020).

    [110] M. Louis et al. Blue-light-absorbing thin films showing ultralong room-temperature phosphorescence. Adv. Mater., 31, 1807887(2019).

    [111] H.-T. Feng et al. White-light emission of a binary light-harvesting platform based on an amphiphilic organic cage. Chem. Mater., 30, 1285-1290(2018).

    [112] Y. Xia, S. Chen, X.-L. Ni. White light emission from cucurbituril-based host-guest interaction in the solid state: new function of the macrocyclic host. ACS Appl. Mater. Interfaces, 10, 13048-13052(2018).

    [113] G. Sun et al. Supramolecular assembly-driven color-tuning and white-light emission based on crown-ether-functionalized dihydrophenazine. ACS Appl. Mater. Interfaces, 12, 10875-10882(2020).

    [114] J. J. Li et al. Room-temperature phosphorescence and reversible white light switch based on a cyclodextrin polypseudorotaxane xerogel. Adv. Opt. Mater., 7, 1900589(2019).

    [115] L. Sun et al. Cocrystal engineering: a collaborative strategy toward functional materials. Adv. Mater., 31, 1902328(2019).

    [116] W. Zhu et al. Rational design of charge-transfer interactions in halogen-bonded co-crystals toward versatile solid-state optoelectronics. J. Am. Chem. Soc., 137, 11038-11046(2015).

    [117] X. Deng et al. Our research progress in heteroaggregation and homoaggregation of organic π-conjugated systems. Aggregate, 2, e35(2021).

    [118] Y. Huang et al. Organic cocrystals: beyond electrical conductivities and field-effect transistors (FETs). Angew. Chem. Int. Ed., 58, 9696-9711(2019).

    [119] H. Wang et al. Visualization and manipulation of solid-state molecular motions in cocrystallization processes. J. Am. Chem. Soc., 143, 9468-9477(2021).

    [120] Y. Huang et al. Reducing aggregation caused quenching effect through co-assembly of PAH chromophores and molecular barriers. Nat. Commun., 10, 169(2019).

    [121] Y. Huang et al. Green grinding-coassembly engineering toward intrinsically luminescent tetracene in cocrystals. ACS Nano, 14, 15962-15972(2020).

    [122] G. Liu et al. Self-healing behavior in a thermo-mechanically responsive cocrystal during a reversible phase transition. Angew. Chem. Int. Ed., 56, 198-202(2017).

    [123] S. d’Agostino et al. Tipping the balance with the aid of stoichiometry: room temperature phosphorescence versus fluorescence in organic cocrystals. Cryst. Growth Des., 15, 2039-2045(2015).

    [124] C. Feng et al. Excited-state modulation for controlling fluorescence and phosphorescence pathways toward white-light emission. Adv. Opt. Mater., 7, 1900767(2019).

    [125] N. T. Kalyani, S. J. Dhoble. Organic light emitting diodes: energy saving lighting technology: a review. Renew. Sust. Energ. Rev., 16, 2696-2723(2012).

    [126] S. Shao, L. Wang. Through-space charge transfer polymers for solution-processed organic light-emitting diodes. Aggregate, 1, 45-56(2020).

    [127] T. Yu et al. Progress in small-molecule luminescent materials for organic light-emitting diodes. Sci. China Chem., 58, 907-915(2015).

    [128] T. Zhang et al. ‘Simple’ aggregation-induced emission luminogens for nondoped solution-processed organic light-emitting diodes with emission close to pure red in the standard red, green, and blue gamut. Adv. Photonics Res., 2, 2100004(2021).

    [129] Z. Zhao, J. W. Y. Lam, B. Z. Tang. Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J. Mater. Chem., 22, 23726-23740(2012).

    [130] S. Chen et al. Non-doped white organic light-emitting diodes based on aggregation-induced emission. J. Phys. D Appl. Phys., 43, 095101(2010).

    [131] Y. Cheng et al. Facile emission color tuning and circularly polarized light generation of single luminogen in engineering robust forms. Mater. Horiz., 6, 405-411(2019).

    [132] Y. Jeon et al. Parallel-stacked flexible organic light-emitting diodes for wearable photodynamic therapeutics and color-tunable optoelectronics. ACS Nano, 14, 15688-15699(2020).

    [133] J. H. Koo et al. Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano, 11, 10032-10041(2017).

    [134] H. Ding et al. An AIEgen-based 3D covalent organic framework for white light-emitting diodes. Nat. Commun., 9, 5234(2018).

    [135] C. Liu et al. Chiral assembly of organic luminogens with aggregation-induced emission. Chem. Sci.(2022).

    [136] Y. Li et al. Implantable bioelectronics toward long-term stability and sustainability. Matter, 4, 1125-1141(2021).

    [137] X. Shi et al. Large-area display textiles integrated with functional systems. Nature, 591, 240-245(2021).

    Jianyu Zhang, Xueqian Zhao, Hanchen Shen, Jacky W. Y. Lam, Haoke Zhang, Ben Zhong Tang. White-light emission from organic aggregates: a review[J]. Advanced Photonics, 2022, 4(1): 014001
    Download Citation