• Laser & Optoelectronics Progress
  • Vol. 54, Issue 3, 30006 (2017)
Tan Hua, Ni Zhenyi, Pi Xiaodong, and Yang Deren
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.030006 Cite this Article Set citation alerts
    Tan Hua, Ni Zhenyi, Pi Xiaodong, Yang Deren. Research Progress in Application of Silicon Quantum Dots in Optoelectronic Devices[J]. Laser & Optoelectronics Progress, 2017, 54(3): 30006 Copy Citation Text show less
    References

    [1] Chen Libai, Guo Zhenning, Yang Xiaoru. Exciton energy levels of (nc-Si/SiO2)/SiO2 multi-layer quantum dots structure[J]. Acta Optica Sinica, 2009, 29(5): 1320-1323.

    [2] Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J]. Applied Physics Letters, 1990, 57(10): 1046-1046.

    [3] Cullis A G, Canham L T. Visible light emission due to quantum size effects in highly porous crystalline silicon[J]. Nature, 1991, 353(6342): 335-338.

    [4] Sham T K, Jiang D T, Coulthard I, et al. Origin of luminescence from porous silicon deduced by synchrotron-light-induced optical luminescence[J]. Nature, 1993, 363(6427): 331-334.

    [5] Takeoka S, Fujii M, Hayashi S. Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime[J]. Physical Review B, 2000, 62(24): 16820-16825.

    [6] Fujii M, Mimura A, Hayashi S, et al. Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films: improvement of photoluminescence efficiency[J]. Applied Physics Letters, 1999, 75(2): 184-186.

    [7] Zhang H J, Lin L Z, Jiang S J. Fabrication of nc-Si/SiO2 structure by thermal oxidation method and its luminescence characteristics[J]. Chinese Optics Letters, 2009, 7(4): 332-334.

    [8] Kim T W, Cho C H, Kim B H, et al. Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3[J]. Applied Physics Letters, 2006, 88(12): 123102-1-3

    [9] Kim B H, Davis R F, Park S J. Optical property of silicon quantum dots embedded in silicon nitride by thermal annealing[J]. Thin Solid Films, 2010, 518(6): 1744-1746.

    [10] Cho K S, Park N M, Kim T Y, et al. High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer[J]. Applied Physics Letters, 2005, 86(7): 071909.

    [11] Lin Juan, Yang Peizhi, Hua Qilin. Microstructure and luminous property of multilayer SiNx/Si/SiNx thin films[J]. Acta Optica Sinica, 2013, 33(2): 0231003.

    [12] Song D, Cho E C, Conibeer G, et al. Fabrication and characterization of Si nanocrystals in SiC matrix produced by magnetron cosputtering[J]. Journal of Vacuum Science & Technology B, 2007, 25(4): 1327-1335.

    [13] Song D, Cho E C, Cho Y H, et al. Evolution of Si (and SiC) nanocrystal precipitation in SiC matrix[J]. Thin Solid Films, 2008, 516(12): 3824-3830.

    [14] Holmes J D, Ziegler K J, Doty R C, et al. Highly luminescent silicon nanocrystals with discrete optical transitions[J]. Journal of the American Chemical Society, 2001, 123(16): 3743-3748.

    [15] Pettigrew K A, Liu Q, Power P P, et al. Solution synthesis of alkyl- and alkyl/alkoxy-capped silicon nanocrystals via oxidation of Mg2Si[J]. Chemistry of Materials, 2003, 15(21): 4005-4011.

    [16] Mangolini L, Thimsen E, Kortshagen U. High-yield plasma synthesis of luminescent silicon nanocrystals[J]. Nano Letters, 2005, 5(4): 655-659.

    [17] Niesar S, Pereira R N, Stegner A R, et al. Low-cost post-growth treatment of crystalline silicon nanoparticles improving surface and electronic properties[J]. Advanced Functional Materials, 2012, 22(6): 1190-1198.

    [18] Buuren T V, Dinh L N, Chase L L, et al. Changes in the electronic properties of Si nanocrystals as a function of particle size[J]. Physical Review Letters, 1998, 80(17): 3803-3806.

    [19] Heitmann J, Müller F, Zacharias M, et al. Silicon nanocrystals: size matters[J]. Advanced Materials, 2005, 17(7): 795-803.

    [20] Jiang Lihua, Zeng Xianbin, Jin Weili, et al. Application of silicon quantum dots in solar cells[J]. Laser & Optoelectronics Progress, 2010, 47(8): 32-37.

    [21] Liu X K, Zhang Y H, Yu T, et al. Optimum quantum yield of the light emission from 2 to 10 nm hydrosilylated silicon quantum dots[J]. Particle & Particle Systems Characterization, 2016, 33(1): 44-52.

    [22] Mastronardi M L, Maier-Flaig F, Faulkner D, et al. Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals[J]. Nano Letters, 2011, 12(1): 337-342.

    [23] Buuren T V, Dinh L N, Chase L L, et al. Changes in the electronic properties of Si nanocrystals as a function of particle size[J]. Physical Review Letters, 1998, 80(17): 3803-3806.

    [24] Pi X D, Liptak R W, Campbell S A, et al. In-flight dry etching of plasma-synthesized silicon nanocrystals[J]. Applied Physics Letters, 2007, 91(8): 083112.

    [25] Pi X D, Liptak R W, Nowak J D, et al. Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach[J]. Nanotechnology, 2008, 19(24): 245603.

    [26] Dasog M, De los Reyes G B, Titova L V, et al. Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups[J]. ACS Nano, 2014, 8(9): 9636-9648.

    [27] Ma Y S, Chen X B, Pi X D, et al. Theoretical study of chlorine for silicon nanocrystals[J]. The Journal of Physical Chemistry C, 2011, 115(26): 12822-12825.

    [28] Ma Y S, Pi X D, Yang D R. Fluorine-passivated silicon nanocrystals: surface chemistry versus quantum confinement[J]. Journal of Physical Chemistry C, 2012, 116(9): 5401-5406.

    [29] Wang R, Pi X D, Yang D R. First-principles study on the surface chemistry of 1.4 nm silicon nanocrystals: case of hydrosilylation[J]. Journal of Physical Chemistry C, 2012, 116(36): 19434-19443.

    [30] Wang R, Pi X D, Yang D R. Surface modification of chlorine-passivated silicon nanocrystals[J]. Physical Chemistry Chemical Physics, 2013, 15(6): 1815-1820.

    [31] Cheng K Y, Anthony R, Kortshagen U R, et al. Hybrid silicon nanocrystal-organic light-emitting devices for infrared electroluminescence[J]. Nano Letters, 2010, 10(4): 1154-1157.

    [32] Puzzo D P, Henderson E J, Helander M G, et al. Visible colloidal nanocrystal silicon light-emitting diode[J]. Nano Letters, 2011, 11(4): 1585-1590.

    [33] Cheng K Y, Anthony R, Kortshagen U R, et al. High-efficiency silicon nanocrystal light-emitting devices[J]. Nano Letters, 2011, 11(5): 1952-1956.

    [34] Maier-Flaig F, Rinck J, Stephan M, et al. Multicolor silicon light-emitting diodes (SiLEDs)[J]. Nano Letters, 2013, 13(2): 475-480.

    [35] Yao L, Yu T, Ba L, et al. Efficient silicon quantum dots light emitting diodes with an inverted device structure[J]. Journal of Materials Chemistry C, 2015, 4(4): 673-677.

    [36] Anthony R J, Cheng K Y, Holman Z C, et al. An all-gas-phase approach for the fabrication of silicon nanocrystal light-emitting devices[J]. Nano letters, 2012, 12(6): 2822-2825.

    [37] Ghosh B, Masuda Y, Wakayama Y, et al. Hybrid white light emitting diode based on silicon nanocrystals[J]. Advanced Functional Materials, 2014, 24(45): 7151-7160.

    [38] Maier-Flaig F, Kübel C, Rinck J, et al. Looking inside a working SiLED[J]. Nano Letters, 2013, 13(8): 3539-3545.

    [39] Mastronardi M L, Henderson E J, Puzzo D P, et al. Silicon nanocrystal oleds: Effect of organic capping group on performance[J]. Small, 2012, 8(23): 3647-3654.

    [40] Tu C C, Tang L, Huang J, et al. Visible electroluminescence from hybrid colloidal silicon quantum dot-organic light-emitting diodes[J]. Applied Physics Letters, 2011, 98(21): 213102.

    [41] Xin Y, Nishio K, Saitow K. White-blue electroluminescence from a Si quantum dot hybrid light-emitting diode[J]. Applied Physics Letters, 2015, 106(20): 201102.

    [42] vrcˇek V, Slaoui A, Muller J C. Silicon nanocrystals as light converter for solar cells[J]. Thin Solid Films, 2004, (s451-452): 384-388.

    [43] Stupca M, Alsalhi M, Al Saud T, et al. Enhancement of polycrystalline silicon solar cells using ultrathin films of silicon nanoparticle[J]. Applied Physics Letters, 2007, 91(6): 063107.

    [44] Pi X D, Li Q, Li D, et al. Spin-coating silicon-quantum-dot ink to improve solar cell efficiency[J]. Solar Energy Materials & Solar Cells, 2011, 95(10): 2941-2945.

    [45] Pi X, Zhang L, Yang D. Enhancing the efficiency of multicrystalline silicon solar cells by the inkjet printing of silicon-quantum-dot ink[J]. Journal of Physicsal Chemistry C, 2012, 116(40): 21240-21243.

    [46] Yuan Z, Pucker G, Marconi A, et al. Silicon nanocrystals as a photoluminescence down shifter for solar cells[J]. Solar Energy Materials & Solar Cells, 2011, 95(4): 1224-1227.

    [47] Sgrignuoli F, Ingenhoven P, Pucker G, et al. Purcell effect and luminescent downshifting in silicon nanocrystals coated back-contact solar cells[J]. Solar Energy Materials & Solar Cells, 2015, 132: 267-274.

    [48] Liu C Y, Holman Z C, Kortshagen U R. Hybrid solar cells from P3HT and silicon nanocrystals[J]. Nano Letters, 2009, 9(1): 449-452.

    [49] Liu C Y, Holman Z C, Kortshagen U R. Optimization of Si NC/P3HT hybrid solar cells[J]. Advanced Functional Materials, 2010, 20(13): 2157-2164.

    [50] Ding Y, Gresback R, Liu Q, et al. Silicon nanocrystal conjugated polymer hybrid solar cells with improved performance[J]. Nano Energy, 2014, 9: 25-31.

    [51] Ding Y, Sugaya M, Liu Q, et al. Oxygen passivation of silicon nanocrystals: influences on trap states, electron mobility, and hybrid solar cell performance[J]. Nano Energy, 2014, 10: 322-328.

    [52] Ding Y, Gresback R, Yamada R. Hybrid silicon nanocrystal/poly(3-hexylthiophene-2, 5-diyl) solar cells from a chlorinated silicon precursor[J]. Japanese Journal of Applied Physics, 2013, 52(11S): 11NM04.

    [53] Zhao S, Pi X D, Mercier C, et al. Silicon-nanocrystal-incorporated ternary hybrid solar cells[J]. Nano Energy, 2016, 26: 305-312.

    [54] Tu C C, Tang L, Huang J, et al. Solution-processed photodetectors from colloidal silicon nano/micro particle composite[J]. Optics Express, 2010, 18 (21): 21622-21627.

    [55] Lin T, Liu X, Zhou B, et al. A solution-processed UV-sensitive photodiode produced using a new silicon nanocrystal ink[J]. Advanced Functional Materials, 2014, 24(38): 6016-6022.

    [56] Lu P, Mu W, Xu J, et al. Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication[J]. Scientific Reports, 2016, 6: 22888.

    [57] Sun H C, Xu J, Liu Y, et al. Subband light emission from phosphorous-doped amorphous Si/SiO2 multilayers at room temperature[J]. Chinese Physics Letters, 2011, 28(6): 067802.

    [58] Chen X B, Pi X D, Yang D R. Critical role of dopant location for P-doped Si nanocrystals[J]. Journal of Physical Chemistry C, 2011, 115(3): 661-666.

    [59] Pi X D, Chen X B, Yang D R. First-principles study of 2.2 nm silicon nanocrystals doped with boron[J]. Journal of Physical Chemistry C, 2011, 115(20): 9838-9843.

    [60] Pi X D, Ni Z Y, Yang D R, et al. Ab initio study on the effect of structural relaxation on the electronic and optical properties of P-doped Si nanocrystals[J]. Journal of Applied Physics, 2014, 116(19): 194304.

    [61] Ni Z Y, Pi X D, Zhou S, et al. Size-dependent structures and optical absorption of boron-hyperdoped silicon nanocrystals[J]. Advanced Optical Materials, 2016, 4(5): 700-707.

    [62] Norris D J, Efros A L, Erwin S C. Doped nanocrystals[J]. Science, 2008, 319(5871): 1176-1779.

    [63] Chen T, Reich K V, Kramer N J, et al. Metal-insulator transition in films of doped semiconductor nanocrystals[J]. Nature Materials, 2016, 114(15): 299-303.

    [64] Chen T, Skinner B, Xie W, et al. Carrier transport in films of alkyl-ligand-terminated silicon nanocrystals[J]. The Journal of Physical Chemistry C, 2014, 118(34): 19580-19588.

    [65] Pi X D, Zalloum O H Y, Knights A P, et al. Electrical conduction of silicon oxide containing silicon quantum dots[J]. Journal of Physics Condensed Matter, 2006, 18(43): 9943-9950.

    [66] Yu T, Wang F, Xu Y, et al. Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors[J]. Advanced Materials, 2016, 28(24): 4912-4919.

    [67] Kovalev D, Diener J, Heckler H, et al. Optical absorption cross sections of Si nanocrystals[J]. Physics Review B, 2000, 61(7): 4485-4487.

    [68] Sychugov I, Pevere F, Luo J W, et al Single-dot absorption spectroscopy and theory of silicon nanocrystals[J]. Physics Review B, 2016, 93(16): 161413.

    [69] Hessel C M, Reid D, Panthani M G, et al. Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths[J]. Chemistry of Materials, 2012, 24(2): 393-401.

    [70] Comedi D, Zalloum O H Y, Wojcik J, et al. Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-rich Si oxide films[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 6(12): 1561-1569.

    [71] Pavesi L, Dal N L, Mazzoleni C, et al. Optical gain in silicon nanocrystals[J]. Nature, 2000, 408(6811): 440-444.

    [72] Ma K, Feng J Y, Zhang Z J. Improved photoluminescence of silicon nanocrystals in silicon nitride prepared by ammonia sputtering[J]. Nanotechnology, 2006, 17(18): 4650-4653.

    [73] Jurbergs D, Rogojina E, Manolini L, et al. Silicon nanocrycrystals with ensemble quantum yields exceeding 60%[J]. Applied Physics Letters, 2006, 88(23): 233116.

    [74] Gupta A, Swihart M T, Wiggers H. Luminescent colloidal dispersion of silicon quantum dots from microwave plasma synthesis: exploring the photoluminescence behavior across the visible spectrum[J]. Advanced Functional Materials, 2009, 19(5): 696-703.

    [75] Mangolini L, Kortshagen U. Plasma-assisted synthesis of silicon nanocrystals inks[J]. Advanced Materials, 2007, 19(18): 2513-2519.

    [76] Kelly J A, Veinot J G C. An investigation into near-UV hydrosilylation of freestanding silicon nanocrystals[J]. ACS Nano, 2010, 4(8): 4645-4656.

    [77] Dasog M, Yang Z, Regli S, et al. Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals[J]. ACS Nano, 2013, 7(3): 2676-2685.

    [78] Kulakci M, Serincan U, Turan R. Electroluminescence generated by a metal oxide semiconductor light emitting diode (MOS-LED) with Si nanocrystals embedded in SiO2 layers by ion implantation[J]. Semiconductor Science and Technology, 2006, 21(12): 1527-1532.

    [79] Marconi A, Anopchenko A, Wang M, et al. High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling[J]. Applied Physics Letters, 2009, 94(22): 221110.

    [80] Anopchenko A, Marconi A, Moser E, et al. Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers[J]. Journal of Applied Physics, 2009, 106(3): 033104.

    [81] Anopchenko A, Marconi A, Wang M, et al. Graded-size Si quantum dot ensembles for efficient light-emitting diodes[J]. Applied Physics Letters, 2011, 99(18): 181108.

    [82] Cho K S, Park N M, Kim T Y, et al. High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer[J]. Applied Physics Letters, 2005, 86(7): 071909.

    [83] Chen L Y, Chen W H, Hong F C N. Visible electroluminescence from silicon nanocrystals embedded in amorphous silicon nitride matrix[J]. Applied Physics Letters, 2005, 86(19): 19350-19356.

    [84] Sung G Y, Park N M, Shin J H, et al. Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1545-1555.

    [85] Xu Wei, Yan Minyi, Xu Jie, et al. Electroluminescence from amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures[J]. Chinese J Lasers, 2012, 39(7): 0706003.

    [86] Huh C, Choi C J, Kim W, et al. Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling[J]. Applied Physics Letters, 2012, 100(18): 181108.

    [87] Rui Y, Li S, Xu J, et al. Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix[J]. Journal of Applied Physics, 2011, 110(6): 064322.

    [88] Rui Y, Li S, Cao Y, et al. Structural and electroluminescent properties of Si quantum dots/SiC multilayers[J]. Applied Surface Science, 2013, 269(11): 37-40.

    [89] Xu X, Cao Y Q, Lu P, et al. Electroluminescence devices based on Si quantum dots/SiC multilayers embedded in PN junction[J]. IEEE Photonics Journal, 2014, 6(1): 2200207.

    [90] Liu C Y, Kortshagen U R. A silicon nanocrystal Schottky junction solar cell produced from colloidal silicon nanocrystals[J]. Nanoscale Research Letters, 2010, 5(8): 1253-1256.

    [91] Cho E C, Park S, Hao X, et al. Silicon quantum dot/crystalline silicon solar cells[J]. Nanotechnology, 2008, 19(24): 245201.

    [92] Cho E C, Green M A, Conibeer G, et al. Silicon quantum dots in a dielectric matrix for all-silicon tandem solar cells[J]. Advances in Optoelectronics, 2007, 2007: 69578.

    [93] Hao X J, Cho E C, Flynn C, et al. Synthesis and characterization of boron-doped Si quantum dots for all-Si quantum dot tandem solar cells[J]. Solar Energy Materials and Solar Cells, 2009, 93(2): 273-279.

    [94] Perez-Wurfl I, Hao X, Gentle A, et al. Si nanocrystal p-i-n diodes fabricated on quartz substrates for third generation solar cell applications[J]. Applied Physics Letters, 2009, 95(15): 153506.

    [95] Kim S K, Cho C H, Kim B H, et al. Electrical and optical characteristics of silicon nanocrystal solar cell[J]. Applied Physics Letters, 2009, 95(14): 143120.

    [96] Song D, Cho E C, Conibeer G, et al. Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices[J]. Solar Energy Materials and Solar Cells, 2008, 92(4): 474-481.

    [97] Lper P, Canino M, Qazzazie D, et al. Silicon nanocrystals embedded in silicon carbide: investigation of charge carrier transport and recombination[J]. Applied Physics Letters, 2013, 102(3): 033507.

    [98] Guha S, Yang J, Yan B. High efficiency multi-junction thin film silicon cells incorporating nanocrystalline silicon[J]. Solar Energy Materials & Solar Cells, 2013, 119(8): 1-11.

    [99] Sai H, Saito K, Hozuki N, et al. Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells[J]. Applied Physics Letters, 2013, 102(5): 053509.

    [100] Yue G, Yan B, Sivec L, et al. Effect of impurities on performance of hydrogenated nanocrystalline silicon solar cells[J]. Solar Energy Materials & Solar Cells, 2012, 104(9): 109-112.

    [101] Sderstrm K, Bugnon G, Biron R, et al. Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate[J]. Journal of Applied Physics, 2012, 112(11): 114503.

    [102] Mai Y, Klein S, Carius R, et al. Open circuit voltage improvement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers[J]. Applied Physics Letters, 2005, 87(7): 073503.

    [103] Yan B, Yue G, Sivec L, et al. Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell[J]. Applied Physics Letters, 2011, 99(11): 113512.

    [104] vrcˇek V, Mariotti D, Shibata Y, et al. A hybrid heterojunction based on fullerenes and surfactant-free, self-assembled, closely packed silicon nanocrystals[J]. Journal of Physics D: Applied Physics, 2010, 43(41): 415402.

    [105] vrcˇek V, Cook S, Kazaoui S, et al. Silicon nanocrystals and semiconducting single-walled carbon nanotubes applied to photovoltaic cells[J]. Journal of Physical Chemistry Letters, 2011, 2(14): 1646-1650.

    [106] Kim Y, Kim C H, Lee Y, et al. Enhanced performance of dye-sensitized TiO2 solar cells incorporating COOH-functionalized Si nanoparticles[J]. Chemistry of Materials, 2010, 22(1): 207-211.

    [107] Wang Rong, Pi Xiaodong, Yang Deren. Stduy on silicon quantum dots sensitized solar cells[J]. Acta Energiae Solaris Sinica, 2013, 34(12): 2228-2231.

    [108] An X, Liu F, Jung Y J, et al. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection[J]. Nano Letters, 2013, 13(3): 909-916.

    [109] Zhu M, Li X, Guo Y, et al. Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes[J]. Nanoscale, 2014, 6(9): 4909-4914.

    [110] Lü P, Zhang X J, Zhang X W, et al. High-sensitivity and fast-response graphene/crystalline silicon Schottky junction-based near-IR photodetectors[J]. IEEE Electron Device Letters, 2013, 34(10): 1337-1339.

    [111] Kim J, Joo S S, Lee K W, et al. Near-ultraviolet-sensitive graphene/porous silicon photodetectors[J]. Applied Materials Interfaces, 2014, 6(23): 20880-20886.

    [112] Shin D H, Kim S, Kim J M, et al. Graphene/Si-quantum-dot heterojunction diodes showing high photosensitivity compatible with quantum confinement effect[J]. Advanced Materials, 2015, 27(16): 2614-2620.

    [113] Wang L, Jie J, Shao Z, et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors[J]. Advanced Functional Materials, 2015, 25(19): 2910-2919.

    CLP Journals

    [1] Wan Jianing, Lin Yu, Zhong Ying, Liu Haitao. Effect of Gold Nanoparticles on Fluorescence Spontaneous Emission of Quantum Dots[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71601

    [2] Guo Shuai, Zhao Jinfeng, Chen Zhihui. A Novel Silver Nanodome Structure for Enhancing Directional Fluorescence Emission in Far Field[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102402

    [3] Zhang Ying, Bai Zhongchen, Huang Zhaoling, Zhao Qi, Peng Man, Qin Shuijie. Influence of Distance Between CdSe Quantum Dot and Gold Nanoparticle on System Fluorescence[J]. Laser & Optoelectronics Progress, 2018, 55(7): 72601

    Tan Hua, Ni Zhenyi, Pi Xiaodong, Yang Deren. Research Progress in Application of Silicon Quantum Dots in Optoelectronic Devices[J]. Laser & Optoelectronics Progress, 2017, 54(3): 30006
    Download Citation