• Journal of Inorganic Materials
  • Vol. 37, Issue 1, 58 (2022)
Xian ZHANG*, Ce ZHANG, Wenjun JIANG, Deqiang FENG, and Wei YAO
Author Affiliations
  • Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
  • show less
    DOI: 10.15541/jim20210263 Cite this Article
    Xian ZHANG, Ce ZHANG, Wenjun JIANG, Deqiang FENG, Wei YAO. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5[J]. Journal of Inorganic Materials, 2022, 37(1): 58 Copy Citation Text show less
    References

    [1] C ZHAO, Z CHEN, R SHI et al. Recent advances in conjugated polymers for visible-light-driven water splitting. Advanced Materials, 32, 1907296(2020). https://onlinelibrary.wiley.com/toc/15214095/32/28

    [2] W KIM T, S CHOI K. Nanoporous BiVO4 photoanodes with dual- layer oxygen evolution catalysts for solar water splitting. Science, 343, 990-994(2014). https://www.science.org/doi/10.1126/science.1246913

    [3] D YUAN, M SUN, S TANG et al. All-solid-state BiVO4/ZnIn2S4 Z-scheme composite with efficient charge separations for improved visible light photocatalytic organics degradation. Chinese Chemical Letters, 31, 547-550(2020). https://linkinghub.elsevier.com/retrieve/pii/S1001841719305960

    [4] Q CHEN, X CHENG, H LONG et al. A short review on recent progress of Bi/semiconductor photocatalysts: the role of Bi metal. Chinese Chemical Letters, 31, 2583-2590(2020). https://linkinghub.elsevier.com/retrieve/pii/S1001841720304708

    [5] S TOKUNAGA, H KATO, A KUDO. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chemistry of Materials, 13, 4624-4628(2001). https://pubs.acs.org/doi/10.1021/cm0103390

    [6] B ZHOU, X ZHAO, H LIU et al. Visible-light sensitive cobalt- doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Applied Catalysis B: Environmental, 99, 214-221(2010). https://linkinghub.elsevier.com/retrieve/pii/S0926337310002651

    [7] B HE, Z LI, D ZHAO et al. Fabrication of porous Cu-doped BiVO4 nanotubes as efficient oxygen-evolving photocatalysts. ACS Applied Nano Materials, 1, 2589-2599(2018). https://pubs.acs.org/doi/10.1021/acsanm.8b00281

    [8] C REGMI, Y.K KSHETRI, T H KIM et al. Visible-light-induced Fe-doped BiVO4 photocatalyst for contaminated water treatment. Molecular Catalysis, 432, 220-231(2017). https://linkinghub.elsevier.com/retrieve/pii/S2468823117300639

    [9] C REGMI, K KSHETRI Y, H KIM T et al. Fabrication of Ni-doped BiVO4 semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment. Applied Surface Science, 413, 253-265(2017). https://linkinghub.elsevier.com/retrieve/pii/S0169433217310723

    [10] W LUO, Z LI, T YU et al. Effects of surface electrochemical pretreatment on the photoelectrochemical performance of Mo- doped BiVO4. The Journal of Physical Chemistry C, 116, 5076-5081(2012). https://pubs.acs.org/doi/10.1021/jp210207q

    [11] W LUO, Z YANG, Z LI et al. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy & Environmental Science, 4, 4046-4051(2011).

    [12] K ZHONG D, S CHOI, R GAMELIN D. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. Journal of the American Chemical Society, 133, 18370-18377(2011). https://pubs.acs.org/doi/10.1021/ja207348x

    [13] X ZHONG, H HE, M YANG et al. In3+-doped BiVO4 photoanodes with passivated surface states for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 6, 10456-10465(2018). http://xlink.rsc.org/?DOI=C8TA01377B

    [14] S USAI, S OBREGÓN, A I BECERRO et al. Monoclinic-tetragonal heterostructured BiVO4 by yttrium doping with improved photocatalytic activity. The Journal of Physical Chemistry C, 117, 24479-24484(2013). https://pubs.acs.org/doi/10.1021/jp409170y

    [15] V GOVINDARAJU G, M MORBEC J, A GALLI G et al. Experimental and computational investigation of lanthanide ion doping on BiVO4 photoanodes for solar water splitting. The Journal of Physical Chemistry C, 122, 19416-19424(2018). https://pubs.acs.org/doi/10.1021/acs.jpcc.8b05503

    [16] Y LUO, G TAN, G DONG et al. Structural transformation of Sm3+ doped BiVO4 with high photocatalytic activity under simulated sun-light. Applied Surface Science, 324, 505-511(2015). https://linkinghub.elsevier.com/retrieve/pii/S0169433214024349

    [17] H BAEK J, M GILL T, H ABROSHAN et al. Selective and efficient Gd-Doped BiVO4 photoanode for two-electron water oxidation to H2O2. ACS Energy Letters, 4, 720-728(2019). https://pubs.acs.org/doi/10.1021/acsenergylett.9b00277

    [18] I RADOSAVLJEVIC, J A K HOWARD, A W SLEIGHT. Synthesis and structure of two new bismuth cadmium vanadates, BiCdVO5 and BiCd2VO6, and structures of BiCa2AsO6 and BiMg2PO6. International Journal of Inorganic Materials, 2, 543-550(2000). https://linkinghub.elsevier.com/retrieve/pii/S1466604900000805

    [19] X XUN, A YOKOCHI, W SLEIGHT A. Synthesis and structure of BiMnVO5 and BiMnAsO5. Journal of Solid State Chemistry, 168, 224-228(2002). https://linkinghub.elsevier.com/retrieve/pii/S0022459602997148

    [20] S ELIZIARIO NUNES, H WANG C, K SO et al. Bismuth zinc vanadate, BiZn2VO6: new crystal structure type and electronic structure. Journal of Solid State Chemistry, 222, 12-17(2015). https://linkinghub.elsevier.com/retrieve/pii/S0022459614004794

    [21] I RADOSAVLJEVIC, J S O EVANS, A W SLEIGHT. Synthesis and structure of bismuth copper vanadate, BiCu2VO6. Journal of Solid State Chemistry, 141, 149-154(1998). https://linkinghub.elsevier.com/retrieve/pii/S0022459698979312

    [22] J HUANG, W SLEIGHT A. Synthesis, crystal structure, and optical properties of a new bismuth magnesium vanadate: BiMg2VO6. Journal of Solid State Chemistry, 100, 170-178(1992). https://linkinghub.elsevier.com/retrieve/pii/002245969290168U

    [23] I RADOSAVLJEVIC, J S O EVANS, A W SLEIGHT. Synthesis and structure of BiCa2VO6. Journal of Solid State Chemistry, 137, 143-147(1998). https://linkinghub.elsevier.com/retrieve/pii/S0022459697977410

    [24] A BHIM, S SASMAL, J GOPALAKRISHNAN et al. Visible- light-activated C-C bond cleavage and aerobic oxidation of benzyl alcohols employing BiMXO5 (M=Mg, Cd, Ni, Co, Pb, Ca and X=V, P). Chemistry - An Asian Journal, 15, 3104-3115(2020). https://onlinelibrary.wiley.com/toc/1861471x/15/19

    [25] H LIU, R NAKAMURA, Y NAKATO. Bismuth-copper vanadate BiCu2VO6 as a novel photocatalyst for efficient visible-light-driven oxygen evolution. ChemPhysChem, 6, 2499-2502(2005). http://doi.wiley.com/10.1002/%28ISSN%291439-7641

    [26] J VAN ELP, H POTZE R, H ESKES et al. Electronic structure of MnO. Physical Review B, 44, 1530-1537(1991). https://link.aps.org/doi/10.1103/PhysRevB.44.1530

    [27] S MASSIDDA, A CONTINENZA, M POSTERNAK et al. Band- structure picture for MnO reexplored: a model GW calculation. Physical Review Letters, 74, 2323-2326(1995). https://link.aps.org/doi/10.1103/PhysRevLett.74.2323

    [28] K COOPER J, S GUL, M TOMA F et al. Electronic structure of monoclinic BiVO4. Chemistry of Materials, 26, 5365-5373(2014). https://pubs.acs.org/doi/10.1021/cm5025074

    [29] P BLAHA, K SCHWARZ, G K H MADSEN et al. WIEN2k, an augmented plane wave+ local orbitals program for calculating crystal properties.(2001).

    [30] P PERDEW J, K BURKE, M ERNZERHOF. Generalized gradient approximation made simple. Physical Review Letters, 77, 3865-3868(1996). https://link.aps.org/doi/10.1103/PhysRevLett.77.3865

    [31] E BLÖCHL P. Projector augmented-wave method. Physical Review B, 50, 17953-17979(1994). https://link.aps.org/doi/10.1103/PhysRevB.50.17953

    [32] G KRESSE, D JOUBERT. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59, 1758-1775(1999). https://link.aps.org/doi/10.1103/PhysRevB.59.1758

    [33] Z JIANG, Y LIU, T JING et al. Enhancing the photocatalytic activity of BiVO4 for oxygen evolution by Ce doping: Ce3+ ions as hole traps. The Journal of Physical Chemistry C, 120, 2058-2063(2016). https://pubs.acs.org/doi/10.1021/acs.jpcc.5b10856

    [34] T PALANISELVAM, L SHI, G METTELA et al. Vastly enhanced BiVO4 photocatalytic OER performance by NiCoO2 as cocatalyst. Advanced Materials Interfaces, 4, 1700540(2017). https://onlinelibrary.wiley.com/doi/10.1002/admi.201700540

    [35] X YAO, X ZHAO, J HU et al. The self-passivation mechanism in degradation of BiVO4 photoanode. iScience, 19, 976-985(2019). https://linkinghub.elsevier.com/retrieve/pii/S2589004219303153

    [36] C BIESINGER M, P PAYNE B, P GROSVENOR A et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257, 2717-2730(2011). https://linkinghub.elsevier.com/retrieve/pii/S0169433210014170

    [37] M LI, W LEI, Y YU et al. High-performance asymmetric supercapacitors based on monodisperse MnO nanocrystals with high energy densities. Nanoscale, 10, 15926-15931(2018). http://xlink.rsc.org/?DOI=C8NR04541K

    [38] G KORTÜM, W BRAUN, G HERZOG. Principles and techniques of diffuse-reflectance spectroscopy. Angewandte Chemie International Edition, 2, 333-341(1963).

    Xian ZHANG, Ce ZHANG, Wenjun JIANG, Deqiang FENG, Wei YAO. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5[J]. Journal of Inorganic Materials, 2022, 37(1): 58
    Download Citation