• Laser & Optoelectronics Progress
  • Vol. 58, Issue 8, 0810020 (2021)
Jinghui Chu, Kailong Huang, and Wei Lü*
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP202158.0810020 Cite this Article Set citation alerts
    Jinghui Chu, Kailong Huang, Wei Lü. A Method for Brain Tumor Segmentation Using Cascaded Modified U-Net[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0810020 Copy Citation Text show less
    References

    [1] Ren L, Li Q, Guan X et al. Three-dimensional segmentation of brain tumors in magnetic resonance imaging based on improved continuous max-flow[J]. Laser & Optoelectronics Progress, 55, 111011(2018).

    [2] Zhang X F, Liu J, Shi Z S et al. Review of deep learning-based semantic segmentation[J]. Laser & Optoelectronics Progress, 56, 150003(2019).

    [3] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[C]. //IEEE Transactions on Pattern Analysis and Machine Intelligence,, 640-651(2015).

    [4] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. //Navab N, Hornegger J, Wells W, et al. Medical Image Computing and Computer-Assisted Intervention Cham: Springer, 9351, 234-241(2015).

    [5] Milletari F, Navab N, Ahmadi S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]. //2016 Fourth International Conference on 3D Vision (3DV), October 25-28, 2016, Stanford, CA, USA, 565-571(2016).

    [6] Chen L C, Papandreou G, Kokkinos I et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018). http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2699184

    [7] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[EB/OL]. (2016-04-30)[2020-08-17]. https://arxiv.org/abs/1511.07122

    [8] Kamnitsas K, Ledig C, Newcombe V F J et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation[J]. Medical Image Analysis, 36, 61-78(2017). http://www.sciencedirect.com/science/article/pii/S1361841516301839?via=ihub

    [9] Chen L C, Papandreou G, Schroff F et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-06-17)[2020-08-17]. https://arxiv.org/abs/1706.05587v1

    [10] Chen L C, Zhu Y K, Papandreou G et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. //Ferrari V, Hebert M, Sminchisescu C, et al. Computer Vision-ECCV 2018. Cham: Springer, 11211, 833-851(2018).

    [11] Wang G T, Li W Q, Ourselin S et al. Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks[EB/OL]. 2017[2020-08-17]. https:∥arxiv.org/pdf/1709.00382.pdf

    [12] Myronenko A. 3D MRI brain tumor segmentation using autoencoder regularization[C]. // Crimi A, Bakas S, Kuijf H, et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Cham: Springer, 11384, 311-320(2018).

    [13] Malmi E, Parambath S, Peyrat J M et al. CaBS: a cascaded brain tumor segmentation approach[C]. //Proceedings MICCAI Brain, Tumor Segmentation (BRATS). [S.l.: s.n.], 42-47(2015).

    [14] Chu J H, Li X C, Zhang J Q et al. Fine-granted segmentation method for three-dimensional brain tumors using cascaded convolutional network[J]. Laser & Optoelectronics Progress, 56, 101001(2019).

    [15] Lafferty J, Mccallum A, Pereira F et al. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]. // Proceedings of 18th International Conference on International Conference on Machine Learning, June 28-July 1, 2001, Williamstown, MA, USA. [S. l.]: International Machine Learning Society, 282-289(2001).

    [16] Zheng S, Jayasumana S, Romera-Paredes B et al. Conditional random fields as recurrent neural networks[C]. //2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile., 1529-1537(2015).

    [17] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. (2015-03-02)[2020-08-17]. https://arxiv.org/abs/1502.03167

    [18] He K M, Zhang X Y, Ren S Q et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]. //2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile, 1026-1034(2015).

    [19] Menze B H, Jakab A, Bauer S et al. The multimodal brain tumor image segmentation benchmark (BRATS)[J]. IEEE Transactions on Medical Imaging, 34, 1993-2024(2015). http://www.ncbi.nlm.nih.gov/pubmed/25494501

    [20] Bakas S, Akbari H, Sotiras A et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features[J]. Scientific Data, 4, 170117(2017). http://www.ncbi.nlm.nih.gov/pubmed/28872634

    [21] Abadi M, Barham P, Chen J M et al. TensorFlow: a system for large-scale machine learning[EB/OL]. (2016-05-27)[2020-08-17]. https://arxiv.org/abs/1605.08695

    [22] Gibson E, Li W Q, Sudre C et al. NiftyNet: a deep-learning platform for medical imaging[J]. Computer Methods and Programs in Biomedicine, 158, 113-122(2018).

    [23] Thada V, Jaglan D V. Comparison of jaccard, dice, cosine similarity coefficient to find best fitness value for web retrieved documents using genetic algorithm[J]. International Journal of Innovations in Engineering and Technology, 2, 202-205(2013). http://www.researchgate.net/publication/306204167_Comparison_of_Jaccard_Dice_Cosine_Similarity_Coefficient_To_Find_Best_Fitness_Value_for_Web_Retrieved_Documents_Using_Genetic_Algorithm

    [24] Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing images using the Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15, 850-863(1993). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=232073

    [25] Isensee F, Kickingereder P, Wick W et al. No new-net[EB/OL]. (2019-01-31)[2020-08-17]. https://arxiv.org/abs/1809.10483?context=cs.CV

    [26] McKinley R, Meier R, Wiest R. Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation[C]. // Crimi A, Bakas S, Kuijf H, et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Cham: Springer, 11384, 456-465(2018).

    [27] Wang G T, Li W Q, Ourselin S et al. Automatic brain tumor segmentation based on cascaded convolutional neural networks with uncertainty estimation[J]. Frontiers in Computational Neuroscience, 13, 56(2019). http://www.ncbi.nlm.nih.gov/pubmed/31456678

    [28] Mehta R, Arbel T. 3D U-net for brain tumour segmentation[C]. //Crimi A, Bakas S, Kuijf H, et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Cham: Springer, 11384, 254-266(2018).

    [29] Hua R, Huo Q, Gao Y Z et al. Multimodal brain tumor segmentation using cascaded V-nets[M]. //Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Cham: Springer, 49-60(2019).

    Jinghui Chu, Kailong Huang, Wei Lü. A Method for Brain Tumor Segmentation Using Cascaded Modified U-Net[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0810020
    Download Citation