• Chinese Journal of Lasers
  • Vol. 51, Issue 3, 0307104 (2024)
Xiangyu Wang, Xi Chen, Tun Cao, and Donghan Ma*
Author Affiliations
  • School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning, China
  • show less
    DOI: 10.3788/CJL231342 Cite this Article Set citation alerts
    Xiangyu Wang, Xi Chen, Tun Cao, Donghan Ma. Application of Adaptive Optics in Super‑Resolution Fluorescence Microscopy[J]. Chinese Journal of Lasers, 2024, 51(3): 0307104 Copy Citation Text show less
    References

    [1] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [2] Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 13081-13086(2005).

    [3] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [4] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [5] Booth M, Andrade D, Burke D et al. Aberrations and adaptive optics in super-resolution microscopy[J]. Microscopy, 64, 251-261(2015).

    [6] Booth M J, Neil M A A, Wilson T. Aberration correction for confocal imaging in refractive-index-mismatched media[J]. Journal of Microscopy (Oxford), 192, 90-98(1998).

    [7] Török P, Varga P, Németh G. Analytical solution of the diffraction integrals and interpretation of wave-front distortion when light is focused through a planar interface between materials of mismatched refractive indices[J]. Journal of the Optical Society of America A, 12, 2660-2671(1995).

    [8] Zhang C H, Zhao Z W, Chen L Y et al. Application of adaptive optics in biological fluorescent microscopy[J]. Scientia Sinica (Physica, Mechanica & Astronomica, 47, 084204(2017).

    [9] Babcock H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 65, 229-236(1953).

    [10] Linnik V P. On the possibility of reducing the influence of atmospheric seeing on the image quality of stars[J]. Optics and Spectroscopy, 3, 401-402(1957).

    [11] Jiang W H. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 45, 170489(2018).

    [12] Hardy J W, Lefebvre J E, Koliopoulos C L. Real-time atmospheric compensation[J]. Journal of the Optical Society of America, 67, 360-369(1977).

    [13] Hardy J W[M]. Adaptive optics for astronomical telescopes(1998).

    [14] Rousset G, Ontanella J C, Kern P et al. First diffraction-limited astronomical images with adaptive optics[J]. Astronomy & Astrophysics, 230, L29-L32(1990).

    [15] Ling N. Multi-element integral piezoelectric deformable mirror (progress report in research stage)[J]. Optical Engineering, 9, 44-52, 43(1982).

    [16] Wang S Q, Wei K, Zheng W J et al. First light on an adaptive optics system using a non-modulation pyramid wavefront sensor for a 1.8 m telescope[J]. Chinese Optics Letters, 14, 100101(2016).

    [17] Lin X D, Liu X Y, Wang J L et al. Performance test and experiment of correction capability of 137-element deformable mirror[J]. Optics and Precision Engineering, 21, 267-273(2013).

    [18] Jia J L, Wang J L, Zhao J Y et al. 961-element adaptive optical wave-front processor[J]. Optics and Precision Engineering, 21, 1387-1393(2013).

    [19] Lin X D, Liu X Y, Wang S et al. Performance testing of a desk-top 97-element adaptive optical system[J]. Optics and Precision Engineering, 24, 1272-1280(2016).

    [20] Wang J L, Dong Y L, Yao K N et al. Three hundred and fourty-nine unit adaptive optical wavefront processor[J]. Optics and Precision Engineering, 26, 1007-1013(2018).

    [21] Ji N. Adaptive optical fluorescence microscopy[J]. Nature Methods, 14, 374-380(2017).

    [22] Liu L X, Zhang M L, Wu Z Q et al. Application of adaptive optics in fluorescence microscope[J]. Laser & Optoelectronics Progress, 57, 120001(2020).

    [23] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 17, S537-S577(2001).

    [24] Tao X D, Fernandez B, Azucena O et al. Adaptive optics confocal microscopy using direct wavefront sensing[J]. Optics Letters, 36, 1062-1064(2011).

    [25] Tao X D, Norton A, Kissel M et al. Adaptive optical two-photon microscopy using autofluorescent guide stars[J]. Optics Letters, 38, 5075-5078(2013).

    [26] Poyneer L A. Scene-based Shack-Hartmann wave-front sensing: analysis and simulation[J]. Applied Optics, 42, 5807-5815(2003).

    [27] Wang Y, Chen X, Cao Z et al. Gradient cross-correlation algorithm for scene-based Shack-Hartmann wavefront sensing[J]. Optics Express, 26, 17549-17562(2018).

    [28] Hubert A, Harms F, Juvénal R et al. Adaptive optics light-sheet microscopy based on direct wavefront sensing without any guide star[J]. Optics Letters, 44, 2514-2517(2019).

    [29] Iglesias I. Pyramid phase microscopy[J]. Optics Letters, 36, 3636-3638(2011).

    [30] Parthasarathy A B, Chu K K, Ford T N et al. Quantitative phase imaging using a partitioned detection aperture[J]. Optics Letters, 37, 4062-4064(2012).

    [31] Li J, Beaulieu D R, Paudel H et al. Conjugate adaptive optics in widefield microscopy with an extended-source wavefront sensor[J]. Optica, 2, 682-688(2015).

    [32] Bon P, Maucort G, Wattellier B et al. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells[J]. Optics Express, 17, 13080-13094(2009).

    [33] Booth M J. Adaptive optical microscopy: the ongoing quest for a perfect image[J]. Light: Science & Applications, 3, e165(2014).

    [34] Huang F, Sirinakis G, Allgeyer E S et al. Ultra-high resolution 3D imaging of whole cells[J]. Cell, 166, 1028-1040(2016).

    [35] Morgan R E, Douglas E S, Allan G W et al. MEMS deformable mirrors for space-based high-contrast imaging[J]. Micromachines, 10, 366(2019).

    [36] Love G D. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator[J]. Applied Optics, 36, 1517-1520(1997).

    [37] Wang K, Milkie D E, Saxena A et al. Rapid adaptive optical recovery of optimal resolution over large volumes[J]. Nature Methods, 11, 625-628(2014).

    [38] Bonora S, Jian Y F, Zhang P F et al. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens[J]. Optics Express, 23, 21931-21941(2015).

    [39] Bueno J M, Skorsetz M, Bonora S et al. Wavefront correction in two-photon microscopy with a multi-actuator adaptive lens[J]. Optics Express, 26, 14278-14287(2018).

    [40] Vicidomini G, Bianchini P, Diaspro A. STED super-resolved microscopy[J]. Nature Methods, 15, 173-182(2018).

    [41] Liu Y F, Peng Z, Peng X et al. Shedding new lights into STED microscopy: emerging nanoprobes for imaging[J]. Frontiers in Chemistry, 9, 641330(2021).

    [42] Deng S H, Liu L, Cheng Y et al. Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy[J]. Optics Express, 18, 1657-1666(2010).

    [43] Antonello J, Burke D, Booth M J. Aberrations in stimulated emission depletion (STED) microscopy[J]. Optics Communications, 404, 203-209(2017).

    [44] Gould T J, Burke D, Bewersdorf J et al. Adaptive optics enables 3D STED microscopy in aberrating specimens[J]. Optics Express, 20, 20998-21009(2012).

    [45] Gould T J, Kromann E B, Burke D et al. Auto-aligning stimulated emission depletion microscope using adaptive optics[J]. Optics Letters, 38, 1860-1862(2013).

    [46] Lenz M O, Sinclair H G, Savell A et al. 3-D stimulated emission depletion microscopy with programmable aberration correction[J]. Journal of Biophotonics, 7, 29-36(2014).

    [47] Patton B R, Burke D, Owald D et al. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics[J]. Optics Express, 24, 8862-8876(2016).

    [48] Nieuwenhuizen R P J, Lidke K A, Bates M et al. Measuring image resolution in optical nanoscopy[J]. Nature Methods, 10, 557-562(2013).

    [49] Zdankowski P, McGloin D, Swedlow J R. Full volume super-resolution imaging of thick mitotic spindle using 3D AO STED microscope[J]. Biomedical Optics Express, 10, 1999-2009(2019).

    [50] Zdankowski P, Trusiak M, McGloin D et al. Numerically enhanced stimulated emission depletion microscopy with adaptive optics for deep-tissue super-resolved imaging[J]. ACS Nano, 14, 394-405(2020).

    [51] Antonello J, Barbotin A, Chong E Z et al. Multi-scale sensorless adaptive optics: application to stimulated emission depletion microscopy[J]. Optics Express, 28, 16749-16763(2020).

    [52] Hao X, Li Y M, Fu S et al. Review of 4Pi fluorescence nanoscopy[J]. Engineering, 11, 146-153(2022).

    [53] Hao X, Allgeyer E S, Lee D R et al. Three-dimensional adaptive optical nanoscopy for thick specimen imaging at sub-50-nm resolution[J]. Nature Methods, 18, 688-693(2021).

    [54] Wang L W, Yan W, Li R Z et al. Aberration correction for improving the image quality in STED microscopy using the genetic algorithm[J]. Nanophotonics, 7, 1971-1980(2018).

    [55] Velasco M G M, Zhang M Y, Antonello J et al. 3D super-resolution deep-tissue imaging in living mice[J]. Optica, 8, 442-450(2021).

    [56] Wu Y C, Shroff H. Faster, sharper, and deeper: structured illumination microscopy for biological imaging[J]. Nature Methods, 15, 1011-1019(2018).

    [57] Ma Y, Wen K, Liu M et al. Recent advances in structured illumination microscopy[J]. Journal of Physics: Photonics, 3, 024009(2021).

    [58] Débarre D, Botcherby E J, Booth M J et al. Adaptive optics for structured illumination microscopy[J]. Optics Express, 16, 9290-9305(2008).

    [59] Thomas B, Wolstenholme A, Chaudhari S N et al. Enhanced resolution through thick tissue with structured illumination and adaptive optics[J]. Journal of Biomedical Optics, 20, 026006(2015).

    [60] Hanser B M, Gustafsson M G L, Agard D A et al. Phase-retrieved pupil functions in wide-field fluorescence microscopy[J]. Journal of Microscopy, 216, 32-48(2004).

    [61] Zheng Y, Chen J J, Wu C X et al. Adaptive optics for structured illumination microscopy based on deep learning[J]. Cytometry Part A, 99, 622-631(2021).

    [62] Turcotte R, Liang Y J, Tanimoto M et al. Dynamic super-resolution structured illumination imaging in the living brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 9586-9591(2019).

    [63] Li Z W, Zhang Q R, Chou S W et al. Fast widefield imaging of neuronal structure and function with optical sectioning in vivo[J]. Science Advances, 6, eaaz3870(2020).

    [64] Lin R Z, Kner P A. Structured illumination microscopy with direct wavefront sensing[J]. Proceedings of SPIE, 11652, 116520A(2021).

    [65] Möckl L, Moerner W E. Super-resolution microscopy with single molecules in biology and beyond-essentials, current trends, and future challenges[J]. Journal of the American Chemical Society, 142, 17828-17844(2020).

    [66] Lelek M, Gyparaki M T, Beliu G et al. Single-molecule localization microscopy[J]. Nature Reviews Methods Primers, 1, 39(2021).

    [67] Izeddin I, El Beheiry M, Andilla J et al. PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking[J]. Optics Express, 20, 4957-4967(2012).

    [68] Burke D, Patton B, Huang F et al. Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy[J]. Optica, 2, 177-185(2015).

    [69] Tehrani K F, Xu J Q, Zhang Y W et al. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm[J]. Optics Express, 23, 13677-13692(2015).

    [70] Tehrani K F, Zhang Y W, Shen P et al. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) by particle swarm optimization[J]. Biomedical Optics Express, 8, 5087-5097(2017).

    [71] Mlodzianoski M J, Cheng-Hathaway P J, Bemiller S M et al. Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections[J]. Nature Methods, 15, 583-586(2018).

    [72] Siemons M E, Hanemaaijer N A K, Kole M H P et al. Robust adaptive optics for localization microscopy deep in complex tissue[J]. Nature Communications, 12, 3407(2021).

    [73] Zhang P Y, Ma D H, Cheng X et al. Deep learning-driven adaptive optics for single-molecule localization microscopy[J]. Nature Methods, 20, 1748-1758(2023).

    [74] Park S, Jo Y, Kang M S et al. Label-free adaptive optics single-molecule localization microscopy for whole zebrafish[J]. Nature Communications, 14, 4185(2023).

    [75] Kang S, Kang P, Jeong S et al. High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering[J]. Nature Communications, 8, 2157(2017).

    [76] Kim M, Jo Y, Hong J H et al. Label-free neuroimaging in vivo using synchronous angular scanning microscopy with single-scattering accumulation algorithm[J]. Nature Communications, 10, 3152(2019).

    [77] Mau A, Friedl K, Leterrier C et al. Fast widefield scan provides tunable and uniform illumination optimizing super-resolution microscopy on large fields[J]. Nature Communications, 12, 3077(2021).

    [78] Fu S, Shi W, Luo T D et al. Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging[J]. Nature Methods, 20, 459-468(2023).

    [79] Park J H, Kong L J, Zhou Y F et al. Large-field-of-view imaging by multi-pupil adaptive optics[J]. Nature Methods, 14, 581-583(2017).

    [80] Speiser A, Müller L R, Hoess P et al. Deep learning enables fast and dense single-molecule localization with high accuracy[J]. Nature Methods, 18, 1082-1090(2021).

    [81] Gao L, Gao B B, Wang F. Applications of super-resolution microscopy techniques in living brain imaging[J]. Chinese Journal of Lasers, 49, 2007301(2022).

    Xiangyu Wang, Xi Chen, Tun Cao, Donghan Ma. Application of Adaptive Optics in Super‑Resolution Fluorescence Microscopy[J]. Chinese Journal of Lasers, 2024, 51(3): 0307104
    Download Citation