• Photonic Sensors
  • Vol. 7, Issue 4, 289 (2017)
Kadhim A. AADIM*
Author Affiliations
  • Department of Physics, College of Science, University of Baghdad, Aljadiriya Campus, Baghdad, 00964, Iraq
  • show less
    DOI: 10.1007/s13320-017-0429-x Cite this Article
    Kadhim A. AADIM. Detection of Laser-Produced Tin Plasma Emission Lines in Atmospheric Environment by Optical Emission Spectroscopy Technique[J]. Photonic Sensors, 2017, 7(4): 289 Copy Citation Text show less
    References

    [1] M. Autin, A. Briand, P. Mauchien, and J. M. Mermet, “Characterization by emission spectrometry of a laser-produced plasma from a copper target in air at atmospheric pressure,” Spectrochimica Acta Part B: Atomic Spectroscopy, 1993, 48(6–7): 851–862.

    [2] O. A. Hammadi, M. K. Khalaf, and F. J. Kadhim, “Fabrication of UV photodetector from nickel oxide nanoparticles deposited on silicon substrate by closed-field unbalanced dual magnetron sputtering techniques,” Optical and Quantum Electronics, 2015, 47(2): 1 9.

    [3] M. Arab, N. Bidin, Z. H. Rizvi, S. Safie, and M. A. Alsaedi, “Comparison study of two commercial spectrometers for heavy metal analysis of laser induced breakdown spectroscopy (LIBS),” Photonic Sensors, 2014, 4(1): 63–69.

    [4] J. B. Simeonsson and A. W. Miziolek, “Spectroscopic studies of laser-produced plasmas formed in CO and CO2 using 193, 266, 355, 532 and 1064 nm laser radiation,” Applied Physics B, 1994, 59(1): 1–9.

    [5] O. A. Hammadi, M. K. Khalafand, and F. J. Kadhim, “Silicon nitride nanostructures prepared by reactive sputtering using closed-field unbalanced dual magnetrons,” Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design & Applications, 2017, 231(5): 479–487.

    [6] D. A. Cremers and L. J. Radziemski, Handbook of laser-induced breakdown spectroscopy. West Sussex, England, Chichester: John Wiley & Sons, Ltd., 2006: 1–275.

    [7] S. B. Zakour and H. Taleb, “Shift endpoint trace selection algorithm and wavelet analysis to detect the endpoint using optical emission spectroscopy,” Photonic Sensors, 2016, 6(2): 158–168.

    [8] O. A. Hamadi, “Effect of annealing on the electrical characteristics of CdO-Si heterostructure produced by plasma-induced bonding technique,” Iraqi Journal of Applied Physics, 2008, 4(3): 34 37.

    [9] M. A. Gigisos, S. Mar, C. Perez, and I. R. I. De, “Experimental Stark widths and shifts and transition probabilities of several Xe II lines,” Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1994, 49(2): 1575–1584.

    [10] D. Zhong and Z. M. Li, “Material measurement method based on femtosecond laser plasma shock wave,” Photonic Sensors, 2017, 7(1): 1–10.

    [11] O. A. Hammadi, M. K. Khalaf, and F. J. Kadhim, “Fabrication and characterization of UV photodetectors based on silicon nitride nanostructures prepared by magnetron sputtering,” Proceedings of the Institution of Mechanical Engineers Part N Journal of Nanoengineering & Nanosystems, 2015, 230(1): 32 36.

    [12] H. R. Griem, Plasma Spectroscopy. New York: McGraw-Hill, 1964.

    [13] W. L. Wiese and G. A. Martin, Wavelengths and Kadhim A. AADIM: Detection of Laser-Produced Tin Plasma Emission Lines in Atmospheric Environment by Optical Emission Spectroscopy Technique 293 transition probabilities for atoms and atomic ions, part II: Transition probabilitie. Washington, DC: National Bureau of Standards, 1980: 1 406.

    [14] M. V. Allmen and A. Blatter, Laser-beam interaction with materials: physical principles and applications. Berlin: Springer-Verlag, 1995: 1–196.

    [15] O. A. Hamadi, “Characteristics of CdO-Si heterostructure produced by plasma-induced bonding technique,” Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design & Applications, 2008, 222(L1): 65–71.

    [16] R. A. Ismail, O. A. Abdulrazaq, A. A. Hadi, and O. A. Hamadi, “Full characterization at 904nm of large area Si p-n junction photodetectors produced by laser-induced diffusion,” International Journal of Modern Physics B, 2007, 19(31): 197 201.

    [17] O. A. Hammadi, “Photovoltaic properties of thermally-grown selenium-doped silicon photodiodes for infrared detection applications,” Photonic Sensors, 2015, 5(2): 152 158.

    [18] A. K. Yousif and O. A. Hamadi, “Plasma-induced etching of silicon surfaces,” Bulgarian Journal of Physics, 2008, 35(3): 191 197.

    [19] M. K. Khalaf, N. A. Al-Tememee, F. T. Ibrahim, and M. A. Hameed, “Crystalline structure and surface morphology of tin oxide films grown by DC reactive sputtering,” Photonic Sensors, 2014, 4(4): 349–353.

    [20] O. A. Hammadi, M. K. Khalaf, F. J. Kadhim, and B. T. Chiad, “Operation characteristics of a closed-field unbalanced dual-magnetrons plasma sputtering system,” Bulgarian Journal of Physics, 2014, 41(1): 24 33.

    [21] K. A. Aadim, “Optical emission spectroscopic analysis of plasma parameters in tin–copper alloy co-sputtering system,” Optical and Quantum Electronics, 2016, 48(12): 545–551.

    [22] O. A. Hammadi and N. E. Naji, “Electrical and spectral characterization of CdS/Si heterojunction prepared by plasma-induced bonding,” Optical and Quantum Electronics, 2016, 48(8): 1 7.

    [23] A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy: fundamentals and applications. Cambridge: Cambridge University Press, 2006: 1 640.

    [24] K. Song, Y. L. Lee, and J. Sneddon, “Applications of laser induced breakdown spectrometry,” Applied Spectroscopy Reviews, 1997, 32(3): 183–235.

    Kadhim A. AADIM. Detection of Laser-Produced Tin Plasma Emission Lines in Atmospheric Environment by Optical Emission Spectroscopy Technique[J]. Photonic Sensors, 2017, 7(4): 289
    Download Citation