[1] RH Brown, RQ Twiss. Correlation between photons in two coherent beams of light. Nature, 27-29(1956).
[2] RQ Twiss. Applications of intensity interferometry in physics and astronomy. Opt Acta Int J Opt, 423-451(1969).
[3] RH Brown, J Davis, LR Allen. The angular diameters of 32 stars. Mon Not Roy Astron Soc, 121-136(1974).
[4] JP Rivet, F Vakili, O Lai, D Vernet, M Fouché et al. Optical long baseline intensity interferometry: prospects for stellar physics. Exp Astron, 531-542(2018).
[5] PD Nuñez, R Holmes, D Kieda, S LeBohec. High angular resolution imaging with stellar intensity interferometry using air cherenkov telescope arrays. Mon Not Roy Astron Soc, 172-183(2012).
[6] G Pilyavsky, P Mauskopf, N Smith, E Schroeder, A Sinclair et al. Single-photon intensity interferometry (SPIIFy): utilizing available telescopes. Mon Not Roy Astron Soc, 3048-3055(2017).
[7] PM Gori, F Vakili, JP Rivet, W Guerin, M Hugbart et al. I3T: intensity interferometry imaging telescope. Mon Not Roy Astron Soc, 2328-2335(2021).
[8] BX Xu, XY Fan, S Wang, ZY He. Sub-femtometer-resolution absolute spectroscopy with sweeping electro-optic combs. Opto-Electron Adv, 210023(2022).
[9] CL Li, JC Liu, FM Qu XH Zhang. Review of nonlinearity correction of frequency modulated continuous wave LiDAR measurement technology. Opto-Electron Eng, 210438(2022).
[10] Bohec S Le, M Daniel, Wit WJ de, JA Hinton, E Jose et al. Stellar intensity interferometry with air Cherenkov telescope arrays. AIP Conf Proc, 205-215(20008).
[11] D Dravins, S LeBohec, H Jensen, PD Nuñez. Stellar intensity interferometry: prospects for sub-milliarcsecond optical imaging. New Astron Rev, 143-167(2012).
[12] J Buckley, P Coppi, S Digel, S Funk, H Krawczynski et al. The Advanced Gamma‐ray Imaging System (AGIS)—Science Highlights. AIP Conf Proc, 902-905(2008).
[13] WL Gong, SS Han. High-resolution far-field ghost imaging via sparsity constraint. Sci Rep, 9280(2015).
[14] A Bulbul, A Vijayakumar, J Rosen. Superresolution far-field imaging by coded phase reflectors distributed only along the boundary of synthetic apertures. Optica, 1607-1616(2018).
[15] ZT Liu, X Shen, HL Liu, H Yu, SS Han. Lensless wiener–khinchin telescope based on second-order spatial autocorrelation of thermal light. Chin Opt Lett, 091101(2019).
[16] A Bulbul, J Rosen. Super-resolution imaging by optical incoherent synthetic aperture with one channel at a time. Photonics Res, 1172-1181(2021).
[17] F Wang, CL Wang, ML Chen, WL Gong, Y Zhang et al. Far-field super-resolution ghost imaging with a deep neural network constraint. Light Sci Appl, 1-11(2022).
[18] YL Liu, YH Chen, F Wang, YJ Cai, CH Liang et al. Robust far-field imaging by spatial coherence engineering. Opto-Electron Adv, 210027(2021).
[19] Y Hu, HZ Xiang, RY Zhao, JK Tu, G Zheng. Mode field diameter measurement of single mode fiber using Bessel function fitting method based on variable aperture in far field. Opto-Electron Eng, 200308(2021).
[20] ZT Liu, SY Tan, JR Wu, ER Li, X Shen et al. Spectral camera based on ghost imaging via sparsity constraints. Sci Rep, 25718(2016).
[21] SC Chen, LH Du, LG Zhu. THz wave computational ghost imaging: principles and outlooks. Opto-Electron Eng, 200024(2020).
[22] JR Fienup. Reconstruction of an object from the modulus of its Fourier transform. Opt Lett, 27-29(1978).
[23] JR Fienup. Phase retrieval algorithms: a comparison. Appl Opt, 2758-2769(1982).
[24] XL Liu, JC Wu, WQ He, MH Liao, CG Zhang et al. Vulnerability to ciphertext-only attack of optical encryption scheme based on double random phase encoding. Opt Express, 18955-18968(2015).
[25] Y Shechtman, YC Eldar, O Cohen, HN Chapman, JW Miao et al. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process Mag, 87-109(2015).
[26] J Sun, Q Qu, J Wright. A geometric analysis of phase retrieval. Found Comput Math, 1131-1198(2018).
[27] C Shen, MS Liang, A Pan, C Yang. Non-iterative complex wave-field reconstruction based on Kramers–Kronig relations. Photonics Res, 1003-1012(2021).
[28] MH Liao, SS Zheng, SX Pan, DJ Lu, WQ He et al. Deep-learning-based ciphertext-only attack on optical double random phase encryption. Opto-Electron Adv, 200016(2021).
[29] SC Feng, C Kane, PA Lee, AD Stone. Correlations and fluctuations of coherent wave transmission through disordered media. Phys Rev Lett, 834-837(1988).
[30] G Osnabrugge, R Horstmeyer, IN Papadopoulos, B Judkewitz, IM Vellekoop. Generalized optical memory effect. Optica, 886-892(2017).
[31] XY Wang, X Jin, JQ Li. Blind position detection for large field-of-view scattering imaging. Photonics Res, 920-928(2020).
[32] JW Goodman. Introduction to Fourier Optics, 7-9(2005).
[33] L Cohen. The generalization of the wiener-khinchin theorem. in
[34] SK Saha. Aperture Synthesis: Methods and Applications to Optical Astronomy, 28(2010).
[35] GA Zheng, C Shen, SW Jiang, PM Song, C Yang. Concept, implementations and applications of Fourier ptychography. Nat Rev Phys, 207-223(2021).
[36] M Bashkansky, RL Lucke, E Funk, LJ Rickard, J Reintjes. Two-dimensional synthetic aperture imaging in the optical domain. Opt Lett, 1983-1985(2002).
[37] F Derie. VLTI delay lines: design, development, and performance requirements. Proc SPIE, 25-40(2000).
[38] RR Shannon, JC Wyant. Applied Optics and Optical Engineering, 156-158(1983).
[39] Horizon Telescope Collaboration Event, K Akiyama, A Alberdi, W Alef, JC Algaba et al. First Sagittarius A* event horizon telescope results. I. The shadow of the supermassive black hole in the center of the milky way. Astrophys J Lett, L12(2022).