• Acta Optica Sinica
  • Vol. 37, Issue 9, 0914006 (2017)
Xiang Wang*, Jianzhong Zhou, Shu Huang, Jie Sheng, and Yang Zheng
Author Affiliations
  • Emmanuel Agyenim-Boateng
  • show less
    DOI: 10.3788/AOS201737.0914006 Cite this Article Set citation alerts
    Xiang Wang, Jianzhong Zhou, Shu Huang, Jie Sheng, Yang Zheng. Effect of Laser Peening on Hydrogen Embrittlement Resistance of TC4 Titanium Alloys[J]. Acta Optica Sinica, 2017, 37(9): 0914006 Copy Citation Text show less
    References

    [1] Huang Xiaoyan, Liu Bo, Li Xue[J]. The application of titanium alloy in military Light Metals, 2005, 51-53.

    [2] Li Donglin, He Weifeng, You Xi et al. Experimental research on improving fatigue strength of wounded TC4 titanium alloy by laser shock peening[J]. Chinese J Lasers, 43, 0702006(2016).

    [3] Kim Y W. Microstructural evolution and mechanical-properties of a forged gamma titanium aluminide alloy[J]. Acta Metallurgica et Materialia, 40, 1121-1134(1992). http://www.sciencedirect.com/science/article/pii/0956715192904117

    [4] Wilde B E, Chattoraj I. The effect of shot peening on hydrogen absorption by and hydrogen permeation through AISI-4130 steels[J]. Scripta Metallurgica et Materialia, 26, 627-632(1992). http://www.sciencedirect.com/science/article/pii/0956716X9290296Q

    [5] Zhang Yunkun. Study on the effects of hydrogen nitriding and thermal oxidation on the properties of titanium alloy Changchun: Changchun Institute of Optics, Fine Mechanics and Physics,[D]. Chinese Academy of Sciences(2005).

    [6] Takakuwa O, Soyama H. Preventing hydrogen embrittlement in stainless steel by means of compressive stress induced by cavitation peening[J]. The Journal of Engineering, 1-4(2015). http://digital-library.theiet.org/content/journals/10.1049/joe.2015.0065

    [7] Ruales M, Martell D, Vazquez F et al. Effect of hydrogen on the dynamic elastic modulus of gamma titanium aluminide[J]. Journal of Alloys and Compounds, 339, 156-161(2002). http://www.sciencedirect.com/science/article/pii/S0925838801019764

    [8] Nelson H G. Environmental hydrogen embrittlement ofan α-β titanium alloy: Effect of hydrogen pressure[J]. Metallurgical Transactions, 4, 364-367(1973).

    [9] Huang Shu, Wang Zuowei, Sheng Jie et al. Characteristics of residual principal stress distribution on surface around hole of IN718 alloy subjected to laser peening[J]. Chinese J Lasers, 44, 0202004(2017).

    [10] Zheng Yang. Study on the hydrogen embrittlement resistance of 316L stainless steel strengthened by laser peening[D]. Zhenjiang: Jiangsu University(2016).

    [11] Fabbro R, Fournier J, Ballard P et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 68, 775-784(1990). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5088191

    [12] Liu Fanfan. Nanostructure formation and strengthening mechanism of Ti-6Al-4V alloy by laser shock processing[D]. Zhenjiang: Jiangsu University(2015).

    [13] Xu Honghao, Zuo Dunwen, Zhu Xiaoxiao et al. Fatigue resistance improvement of TC4 titanium alloy with high speed milling under stretching fixation[J]. Journal of Nanjing University of Aeronautics & Astronautics, 40, 260-264(2008).

    [14] Huang Shu, Sheng Jie, Zhou Jianzhong et al. Microstructure characteristics and high-temperature performance of laser peened IN718 nickel-based alloy[J]. Rare Metal Materials and Engineering, 45, 3284-3289(2016).

    [15] Niwa M, Shikama T, Yonezu A. Mechanism of hydrogen embrittlement cracking produced by residual stress from indentation impression[J]. Materials Science and Engineering: A, 624, 52-61(2015). http://www.sciencedirect.com/science/article/pii/S0921509314013471

    [16] Kang K J, Song J H, Earmme Y Y. Fatigue crack-growth and closure behavior through a compressive residual stress field[J]. Fatigue & Fracture of Engineering Materials & Structures, 13, 1-13(1990). http://onlinelibrary.wiley.com/doi/10.1111/j.1460-2695.1990.tb00572.x/full

    [17] Takakuwa O, Nishikawa M, Soyama H. Numerical simulation of the effects of residual stress on the concentration of hydrogen around a crack tip[J]. Surface & Coatings Technology, 206, 2892-2898(2012). http://www.sciencedirect.com/science/article/pii/S025789721101228X

    [18] Zhang T, Chu W Y, Gao K W et al. Study of correlation between hydrogen-induced stress and hydrogen embrittlement[J]. Materials Science and Engineering A, 347, 291-299(2003). http://www.sciencedirect.com/science/article/pii/S0921509302006007

    [19] Hu J, Shi Y N, Sauvage X et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals[J]. Science, 355, 1292-1296(2017). http://europepmc.org/abstract/MED/28336664

    [21] Wang S, Zhang M H, Quek S T. Tensile strength versus toughness of cement-based materials against high-velocity projectile impact[J]. International Journal of Protective Structures, 2, 207-219(2011). http://www.researchgate.net/publication/284985138_Tensile_Strength_versus_Toughness_of_Cement-Based_Materials_against_High-Velocity_Projectile_Impact

    [22] Zou S K, Cao Z W, Che Z G et al. The surface profile of laser peening with square spots[J]. Rare Metal Materials and Engineering, 40, 240-242(2011). http://www.cqvip.com/QK/92850X/2011S4/6677983692011S4054.html

    Xiang Wang, Jianzhong Zhou, Shu Huang, Jie Sheng, Yang Zheng. Effect of Laser Peening on Hydrogen Embrittlement Resistance of TC4 Titanium Alloys[J]. Acta Optica Sinica, 2017, 37(9): 0914006
    Download Citation