• Journal of Advanced Dielectrics
  • Vol. 12, Issue 5, 2250012 (2022)
Mehak Arora1, Shubhpreet Kaur1, Sunil Kumar1, Parambir Singh Malhi2, Mandeep Singh1, and Anupinder Singh1、*
Author Affiliations
  • 1Department of Physics, Guru Nanak Dev University, Amritsar 143001 Punjab, India
  • 2Department of Chemistry, Guru Nanak Dev University, Amritsar 143001 Punjab, India
  • show less
    DOI: 10.1142/S2010135X22500126 Cite this Article
    Mehak Arora, Shubhpreet Kaur, Sunil Kumar, Parambir Singh Malhi, Mandeep Singh, Anupinder Singh. Evaluation of dielectric, energy storage and multiferroic properties of PrFeO3-PbTiO3 solid solutions[J]. Journal of Advanced Dielectrics, 2022, 12(5): 2250012 Copy Citation Text show less
    References

    [1] M. Bibes, A. Barthélémy. Multiferroics: Towards a magnetoelectric memory. Nat. Mater., 7, 425(2008).

    [2] C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, G. Srinivasan. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys., 103, 031101(2008).

    [3] N. A. Spaldin, S. Cheong, R. Ramesh. Multiferroics: Past, present, and future Additional resources for Physics Today. Cit. Phys. Today, 63, 38(2010).

    [4] G. A. Smolenskii, I. E. Chupis. Ferroelectromagnets. Sov. Phys. - Uspekhi, 25, 415(1982).

    [5] J. P. Velev, S. S. Jaswal, E. Y. Tsymbal. Multi-ferroic and magnetoelectric materials and interfaces. Philos. Trans. R. Soc. A, 369, 3069-3097(2011).

    [6] M. Gajek et al. Tunnel junctions with multiferroic barriers. Nat. Mater., 6, 296(2007).

    [7] J. M. Chem. Applications of magnetoelectrics. J. Mater. Chem., 22, 4567(2012).

    [8] D. Storage. Multiferroic memories model interfaces. Nat. Mater., 6, 256(2007).

    [9] N. A. Hill. Why are there so few magnetic ferroelectrics?. J. Phys. Chem. B, 104, 6694(2000).

    [10] D. Khomskii. Classifying multiferroics: Mechanisms and effects. Physics (College. Park. Md)., 2, 2-8(2009).

    [11] K. C. Verma, R. K. Kotnala, N. S. Negi. Improved dielectric and ferromagnetic properties in Fe-doped PbTiO 3nanoparticles at room temperature. Appl. Phys. Lett., 92, 152902(2008).

    [12] C. M. Leung, J. Li, D. Viehland, X. Zhuang. A review on applications of magnetoelectric composites: From heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters. J. Phys. D. Appl. Phys., 51, 263002(2018).

    [13] W. Eerenstein, N. D. Mathur, J. F. Scott. Multiferroic and magnetoelectric materials. Nature, 442, 759(2006).

    [14] C. Schmitz-Antoniak et al. Electric in-plane polarization in multiferroic CoFe2O 4/BaTiO3nanocomposite tuned by magnetic fields. Nat. Commun., 4, 2051(2013).

    [15] L. Zhang, S. Jiang, B. Fan, G. Zhang. Enhanced energy storage performance in (Pb0.858Ba0.1La0.02Y0.008) (Zr0.65Sn0.3Ti0.05)O3-(Pb0.97La0.02) (Zr0.9Sn0.05Ti0.05)O3anti-ferroelectric composite ceramics by spark plasma sintering. J. Alloys Compd., 622, 162(2015).

    [16] S. Kumar et al. Correlation between multiferroic properties and processing parameters in NdFeO 3-PbTiO3solid solutions. J. Alloys Compd., 764, 824(2018).

    [17] C. Zhang et al. Multiferroicity in SmFeO3 synthesized by hydrothermal method. J. Alloys Compd., 665, 152(2016).

    [18] K. Aizu. Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B, 2, 754(1970).

    [19] H. Schmid. Multi-ferroic magnetoelectrics. Ferroelectrics, 162, 317(1994).

    [20] A. Singh, R. Chatterjee. Magnetization induced dielectric anomaly in multiferroic LaFeO3 -PbTiO3solid solution. Appl. Phys. Lett., 93, 1(2008).

    [21] J. E. Garcia, V. Gomis, R. Perez, A. Albareda, J. A. Eiras. Unexpected dielectric response in lead zirconate titanate ceramics: The role of ferroelectric domain wall pinning effects. Appl. Phys. Lett., 91, 1(2007).

    [22] H. Jaffe. Piezoelectric ceramics. J. Am. Ceram. Soc., 41, 494(1958).

    [23] A. V. Kimel et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature, 435, 655(2005).

    [24] D. Bossini et al. Time-resolved nonlinear infrared spectroscopy of samarium ions in SmFeO3. Phys. Rev. B. Condens. Matter Mater. Phys., 87, 2(2013).

    [25] A. Pelaiz Barranco, F Calderon Piñar, O. Perez Martinez, E. Torres Garcia. Effects of MnO2 additive on the properties of PbZrO3-PbTiO 3-PbCu1/4Nb3/4O3 ferroelectric ceramic system. J. Eur. Ceram. Soc., 21, 523(2001).

    [26] K. T. Kubra et al. Synthesis and characterization of novel Pr6O11 /Mn3O4 nanocomposites for electrochemical supercapacitors. Ceram. Int., 45, 6819(2019).

    [27] R. D. Shanon. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst., 32, 751(1976).

    [28] W. Cao et al. Effect of Pr6O11 doping on the microstructure and electrical properties of ZnO varistors. Ceram. Int., 45, 24777(2019).

    [29] S. V. Trukhanov. Investigation of stability of ordered manganites. J. Exp. Theor. Phys., 101, 513(2005).

    [30] S. V. Trukhanov et al. Study of A-site ordered PrBaMn2O6-δ manganite properties depending on the treatment conditions. J. Phys. Condens. Matter, 17, 6495(2005).

    [31] J. Park, T. Kimura. Competition between lattice distortion and charge dynamics for the charge carriers of double-layered manganites. Phys. Rev. B Condens. Matter Mater. Phys., 58, R13330(1998).

    [32] A. Moodenbaugh, B. Nielsen, S. Sambasivan. Hole-state density of across the insulator/metal phase boundary. Phys. Rev. B Condens. Matter Mater. Phys., 61, 5666(2000).

    [33] M. Marezio, P. D. Dernier. The bond lengths in LaFeO3. Mater. Res. Bull., 6, 23(1971).

    [34] K. Singh, V. Singh, R. Gupta, K. Bamzai. Structural, dielectric, piezoelectric and ferroelectric behavior of rare earth double doped lead titanate ceramics synthesized by solid state method. J. Appl. Phys., 6, 8(2014).

    [35] R. Samad, M. ud D. Rather, K. Asokan, B. Want. Structural, dielectric and ferroelectric properties of rare earth substituted lead zirconate titanate. J. Mater. Sci. Mater. Electron., 29, 4226(2018).

    [36] L. Zou et al. Microstructure and electric properties of Pr-doped Pb(Zr0.52Ti0.48)O3 ceramics. Ceram. Int., 47, 19328(2021).

    [37] T. Takahashi. Lead titanate ceramics with large piezoelectric anisotropy and their applications. Ceram. Bull., 69, 691(1990).

    [38] K. Okazaki. Mechanical behavior of ferroelectric ceramics. Am. Ceram. Soc. Bull., 63, 1150(1984).

    [39] K. Prasad, R. Sati, R. N. P. Choudhary. Synthesis and electrical studies of modified PbTiO3 ceramics. Bull. Mater. Sci., 16, 679(1993).

    [40] K. Prasad, R. Sati, R. N. Chodhary, K. L. Yadav. (Pb,Ca)[(Mn0.05W0.05)Ti0.90]O3: X-ray and dielectric studies. J. Mater. Sci. Lett., 12, 758(1993).

    [41] M. Arora et al. Evidence of finite magneto-electric coupling in SmFeO3–PbTiO 3solid solutions. J. Magn. Magn. Mater., 547, 1(2022).

    [42] W. L. Warren, D. Dimos, G. E. Pike, B. A. Tuttle, M. V. Raymond. Voltage shifts and imprint in ferroelectric capacitors. Appl. Phys. Lett., 67, 866(1995).

    [43] A. Morelli, S. Venkatesan, G. Palasantzas. Polarization retention loss in PbTiO 3ferroelectric films due to leakage currents. J. Appl. Phys., 102, 084103(2007).

    [44] J. Mendiola, B. Jimenez, C. Alemany, L. Pardo, L. Del Olmo. Influence of calcium on the ferroelectricity of modified lead titanate ceramics. Ferroelectrics, 94, 183(1989).

    [45] L. Yang et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci., 102, 72(2019).

    [46] T. Zhang et al. Enhanced electrocaloric analysis and energy-storage performance of lanthanum modified lead titanate ceramics for potential solid-state refrigeration applications. Sci. Rep., 8, 1(2018).

    [47] Z. Ren et al. Room-temperature ferromagnetism in Fe-doped PbTiO3nanocrystals. Appl. Phys. Lett., 91, 063106(2007).

    [48] V. R. Palkar, D. C. Kundaliya, S. K. Malik, S. Bhattacharya. Magnetoelectricity at room temperature in the Bi0.9−xTbxFeO3 system. Phys. Rev. B - Condens. Matter Mater. Phys., 69, 9(2004).

    [49] M. Kumar, K. L. Yadav. Study of dielectric, magnetic, ferroelectric and magnetoelectric properties in the PbMn xTi1 −xO 3system at room temperature. J. Phys. Condens. Matter, 19, 242202(2007).

    [50] M. Singh, J. Singh, M. Kumar, S. Kumar. Investigations on multiferroic properties of lead free (1−x)BCZT-xCZFMO based particulate ceramic composites. Solid State Sci., 108, 106380(2020).

    Mehak Arora, Shubhpreet Kaur, Sunil Kumar, Parambir Singh Malhi, Mandeep Singh, Anupinder Singh. Evaluation of dielectric, energy storage and multiferroic properties of PrFeO3-PbTiO3 solid solutions[J]. Journal of Advanced Dielectrics, 2022, 12(5): 2250012
    Download Citation